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o« set of nodes (vertices) N ={1,2,3,...}
o set of edges (links) E = {{1,2},{1,4},{2,5},...}

O—O—-—-0
o (simple unlabelled undirected) graph: S O

oO—0O-O0
o (simple unlabelled undirected) connected graph: oO—O

O—0O——~0
o (simple undirected) labelled graph: S5—0
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The Bernoulli random graph model G{n,p}

o let G be a graph of n nodes

o let p = 1—¢q be the probability that each possible edge exists
« edge events are independent

o let P(n,p) be the probability that G{n,p} is connected

» then P(L,p) =1 and P(n,p) =1-337 (7)) P(k,p)g" "~
for n=2,3,4,...

P2,p) = 1—¢q

P(3,p) = (2q+1)(¢—1)°

P(4,p) = (6¢°+6¢*+3q+1)(1—q)°

P(5,p) = (24¢°+36¢°+30¢*+204°+10¢*+4q+1) (¢—1)*

« as n — oo, we have P(n,p) — 1—ng" !
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Connectivity for the Bernoulli model

2,5,10,20,50,100,200 nodes
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More on the Bernoulli random graph model

o the probability that two pre-specified nodes (not randomly
chosen) are connected is different. If we call this R(n,p),

then we have R(1,p) =1 and:

n—1
n—2 _
R(TL?p):l_Z (k_l)P(k7p)qk(n k)7 n:273747”'
k=1
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Pr|(1 and 2 connected| for the Bernoulli model

2,5,10,20,50,100,200 nodes
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Probability of connectivity for the G(n, m) model

o problem: compute the numbers of connected labelled graphs
with n nodes and m =n—1,n,n+1,n+2,... edges

o with this information, compute the probability of a randomly
chosen labelled graph being connected

o compute large-n asymptotics for these quantities, for fixed
excess k=m—n

o | have computed the accurate asymptotics and have checked
the results against exact numerical data

e a sketch of the ideas involved follows; full details are available on request
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The idea of generating functions
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The idea of generating functions

o generating function (gf):

@)
{ay,as,a3,...} < Z apz”
k=1

o exponential generating function (egf):

O

a

{ay,as,as,...} E k_
l—1
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Some known exponential generating functions
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Some known exponential generating functions

exponential generating function enumerating labelled graphs
([z"]: number with n nodes; [w™]|: number with m edges):

Z 1+w k/k'
k=0

exponential generating function enumerating connected
labelled graphs:

c(w,z) = log(g(w,z))

z—l—w%—l—(3w2+w3)%—l—(16w +15w* + 6w’ 4w )Z'+. .
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egfs for labelled graphs [jklp93]

o rooted labelled trees
Zn
T(z) =zexp(T(z)) = Zn”_lﬁ = 2522+ 5204
n>1 )
o unrooted labelled trees
W_i1(z) =T(2)-T(2)*/2 = z+ 522 +523 4844 .

« unicyclic labelled graphs

1 1 1 1
Wy(z) = §log ll—T(z)] —§T(z)—ZT(z)2 = 2o+ D2 222,04 0004

» bicyclic labelled graphs

T(z)4(6—T(z)) 6

Wi(z) = u(1-1T())° "

z4+%z5+%z6+. ..
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Introduction to asymptotic expansions

o Stirling:

1/2
n\ " ]_ 1 ]. —9 139 -3

o Taylor series:

1/T'(n) = n+0.57721566 . .. n—0.65587807 ... n*+. ..

e e.g. for n =4, I'(4) = 6: 3 terms of asymptotic expansion
give an absolute error < 107

o cf. the Taylor series - 3 terms give an absolute error > 5

o asymptotic expansion diverges for all n!
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Asymptotic expansion of P(n,n+k)

k type R0 | [P | Y | [
P(n,n—1) 1 v
—1 tree | Sron, 177 5 0 —3 0
: P (n,n40) 1 7 1 1051
O | unicycle gnedng zf G 3 ~ 1080
: P(n,n+1) 5 7 515 28
1 bicycle SIS EINYLT: 15 —15§ 144 — 79

Keith Briggs Connectivity of random graphs 13 of 25



Unlabelled graphs

o« much less is known about the unlabelled case

o the difficulties arise in distinguishing isomorphic graphs

Uni cyclic graphs - 7 nodes Keith Briggs 2004 Sep 05 09: 54
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Asymptotics for unlabelled unicycles

o | get that the number ¢(n,n) of connected unlabelled unicyclic
graphs behaves like

c(n,n) 1\ 35
()

—0.4466410059+0.44311055235n 1 4-0.91158865326n*4+O(n ")
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Geometric random graphs

Consider connectivity of nodes with a radio range p placed
uniformly and randomly in a bounded region under various
models:

e Poisson 1d model. the nodes exist on all of R with a exponential distribution of
separation with parameter )\, and a window of unit length is placed over them.
The number of nodes visible through the window is Poisson distributed

e fixed-n 1d model: there are exactly n nodes independently and uniformly placed
in [0, 1]
e Poisson 2d model: the nodes exist on all of R®* with a intensity )\, and a

finite-area window is placed over them The number of nodes visible through
the window is Poisson distributed

e fixed-n 2d model. there are exactly n nodes independently and uniformly placed
in a bounded region R

Notation:

> pdf=probability density function

> cdf=cumulative distribution function

> the notation is sloppy in not distinguishing a RV X and its values x
> [[x]] is the indicator function: 1 if x is true, else 0

Keith Briggs Connectivity of random graphs 16 of 25]



Theory for the Poisson 1d model

o A is the intensity of nodes per unit length



Theory for the Poisson 1d model

o A is the intensity of nodes per unit length

o the pdf of the internode distance d is f(d) = Ae™



Theory for the Poisson 1d model

o A is the intensity of nodes per unit length
o the pdf of the internode distance d is f(d) = Ae™

o the cdf of the internode distance is F'(d) = 1—e~



Theory for the Poisson 1d model

A is the intensity of nodes per unit length
the pdf of the internode distance d is f(d) = Ae™

the cdf of the internode distance is F(d) = 1—e~?

the expectation of d is E[d| =1/



Theory for the Poisson 1d model

A is the intensity of nodes per unit length
the pdf of the internode distance d is f(d) = Ae™
the cdf of the internode distance is F(d) = 1—e~?

the expectation of d is E[d| =1/

we now place a unit length window over R and assume that
n nodes are visible



Theory for the Poisson 1d model

A is the intensity of nodes per unit length
the pdf of the internode distance d is f(d) = Ae™

the cdf of the internode distance is F(d) = 1—e~?
the expectation of d is E[d| =1/

we now place a unit length window over R and assume that
n nodes are visible

e there are n—1 internode intervals, and the cdf of the maximum interval is
Fooy(d) = (1—e )



Theory for the Poisson 1d model

A is the intensity of nodes per unit length
the pdf of the internode distance d is f(d) = Ae™

the cdf of the internode distance is F(d) = 1—e~?
the expectation of d is E[d| =1/

we now place a unit length window over R and assume that
n nodes are visible

e there are n—1 internode intervals, and the cdf of the maximum interval is
Fooi(d) = (1—e )
o the cdf of the minimum interval is Fi(d) = 1—e "



Theory for the Poisson 1d model

A is the intensity of nodes per unit length
the pdf of the internode distance d is f(d) = Ae™

the cdf of the internode distance is F(d) = 1—e~?
the expectation of d is E[d| =1/

we now place a unit length window over R and assume that
n nodes are visible

e there are n—1 internode intervals, and the cdf of the maximum interval is
Fooy(d) = (1—e )

o the cdf of the minimum interval is Fi(d) = 1—e "

o the pdf of the minimum interval is fi(d) = nie "



Theory for the Poisson 1d model

A is the intensity of nodes per unit length
the pdf of the internode distance d is f(d) = Ae™

the cdf of the internode distance is F(d) = 1—e~?
the expectation of d is E[d| =1/

we now place a unit length window over R and assume that
n nodes are visible

e there are n—1 internode intervals, and the cdf of the maximum interval is
Fooy(d) = (1—e )

e the cdf of the minimum interval is Fi(d) = 1—e
—nAd

—nAd

e the pdf of the minimum interval is fi(d) = nXe

o the expectation of the minimum interval is E[d)] = 1/(2X), so is half the
expectation of the internode distance



o \ IS

Theory for the Poisson 1d model

the intensity of nodes per unit length

the pdf of the internode distance d is f(d) = Ae™

the cdf of the internode distance is F(d) = 1—e~?
the expectation of d is E[d| =1/

we now place a unit length window over R and assume that

n nodes are visible

Keith Briggs

there are n—1 internode intervals, and the cdf of the maximum interval is
Fooy(d) = (1—e )

the cdf of the minimum interval is Fi(d) = 1—e "
the pdf of the minimum interval is fi(d) = n\e "
the expectation of the minimum interval is E[d)] = 1/(2X), so is half the

expectation of the internode distance

the probability of full connectivity for the n nodes is thus approximately
(i.e. ignoring correlation and edge effects) F,_1(p) = (1—e **)""!
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Exact theory for the fixed-n 1d model

o Let yp = x (1) —x(x_1) be the gaps (k = 2,...,n), with y; = z)
Y1 Y2 Y3
| | | | |
0 L (1) T(2) X(3) S L(n) 1
e their joint pdfis (for 1 <m < mand > " y; <1)

f(y17y27"'7ym)_(n m)'< Z%)

e if ¢; are constants such that > ", ¢; < 1, then by integrating the pdf we obtain

m n—1
Privi > ci,y2 > co,...] = <1_Z Ci)

1=1

e Boole's law for the probability of at least one event A; of n events A1, Ao, ..., A, occurring
IS

Pr [O Ai] =Y PriA]=) ) Prl4Aj]+ -+ (—1)"'PrlA1As ... A,

i=1 i<j
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Exact theory for the fixed-n 1d model (cotd)

« We don’t care about y;, so we put ¢; =0

o using Boole’s law, the probability that the largest y; exceeds
some constant p is

n—1
Pr{yemy > p| = (n=1) Pry; > p]—( ) ) Priyi > c1,92 > o] +. ..

o thus

[1/p] |
Pr[connected] = 1— ) ~ (—1)""

1=1

(

n—1

>(1—ip)”

(

« note that for p > 1/2, this is exactly 1—(n—1)(1—p)"

Keith Briggs
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Probability of connectivity for the fixed-n 1d model

2,5, 10, 20, 50 nodes

1.0

o o o
NN o (0]
T T T

probability of full connectivity

o
N
T

OO | . | . | . | .
0.0 0.2 0.4 0.6 0.8 1.0

range

2 5 10 20 50
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Theory for the Poisson 2d model

o A is the intensity of nodes per unit area

o the pdf of the nearest neighbour distance d is
f(d) = 2rA\de= ¢

. the cdf of d is F(d) =1—e ™
the expectation of d is E[d] = 1/(2AY/?)
o the variance of d is (4—m)/(47A)

. the probability of a node being isolated (i.e. having no neigh-
bour within range p) is e ™
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Theory for the Poisson 2d model

we now place a window R of area A over R?

e the number of nodes visible will be Poisson distributed with mean \ A

e Conditional on n nodes being visible, and if the nearest neighbour distances were
independent (which is not the case) the probability of no node being isolated

2 n
would be (1—8—“0)
e there is no simple way to compute the probability of full connectivity. However,
since a necessary condition is that no node is isolated, the last expression is an

approximate upper bound for the fixed-n model and is plotted in red on the
following graph

e the blue curve is the asymptotic probability of the whole region R being covered
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The phase transition

« the critical radius is O((log(n)/(7n))'/?)
o for n = 100, we estimate p = 0.121; for n = 500, p = 0.0629

torus, 100 nodes
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1.0
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I

Simulation results - torus, p=0.1,0.3
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