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• (simple unlabelled undirected) connected graph:

• (simple undirected) labelled graph:
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The Bernoulli random graph model G{n, p}

• let G be a graph of n nodes

• let p = 1−q be the probability that each possible edge exists
• edge events are independent

• let P (n, p) be the probability that G{n, p} is connected

• then P (1, p) = 1 and P (n, p) = 1−
∑n−1

k=1

(
n−1
k−1

)
P (k, p)qk(n−k)

for n = 2, 3, 4, . . .

P (2, p) = 1−q

P (3, p) = (2 q+1) (q−1)2

P (4, p) =
(
6 q3+6 q2+3 q+1

)
(1−q)3

P (5, p) =
(
24 q6+36 q5+30 q4+20 q3+10 q2+4 q+1

)
(q−1)4

• as n →∞, we have P (n, p) → 1−nqn−1

Keith Briggs Connectivity of random graphs 4 of 25



Connectivity for the Bernoulli model
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More on the Bernoulli random graph model

• the probability that two pre-specified nodes (not randomly
chosen) are connected is different. If we call this R(n, p),
then we have R(1, p) = 1 and:

R(n, p) = 1−
n−1∑
k=1

(
n−2
k−1

)
P (k, p)qk(n−k), n = 2, 3, 4, . . .
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Pr [1 and 2 connected] for the Bernoulli model
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Probability of connectivity for the G(n, m) model

• problem: compute the numbers of connected labelled graphs
with n nodes and m = n−1, n, n+1, n+2, . . . edges

• with this information, compute the probability of a randomly
chosen labelled graph being connected

• compute large-n asymptotics for these quantities, for fixed
excess k ≡ m−n

• I have computed the accurate asymptotics and have checked
the results against exact numerical data

• a sketch of the ideas involved follows; full details are available on request
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The idea of generating functions

• generating function (gf):

{a1, a2, a3, . . . } ↔
∞∑

k=1

akx
k

• exponential generating function (egf):

{a1, a2, a3, . . . } ↔
∞∑

k=1

ak

k!
xk
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Some known exponential generating functions
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Some known exponential generating functions

• exponential generating function enumerating labelled graphs
([zn]: number with n nodes; [wm]: number with m edges):

g(w, z) =
∞∑

k=0

(1+w)(
k
2)zk/k!

• exponential generating function enumerating connected
labelled graphs:

c(w, z) = log(g(w, z))

= z+w
z2

2
+(3w2+w3)

z3

6
+(16w3+15w4+6w5+w6)

z4

4!
+. . .
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egfs for labelled graphs [jklp93]

• rooted labelled trees

T (z) = z exp(T (z)) =
∑
n>1

nn−1z
n

n!
= z+ 2

2!z
2+ 9

3!z
3+· · ·

• unrooted labelled trees

W−1(z) = T (z)−T (z)2/2 = z+ 1
2!z

2+ 3
3!z

3+16
4!z

4+. . .

• unicyclic labelled graphs

W0(z) =
1
2

log
[

1
1−T (z)

]
−1

2
T (z)−1

4
T (z)2 = 1

3!z
3+15

4!z
4+222

5! z5+3660
6! z6+. . .

• bicyclic labelled graphs

W1(z) =
T (z)4

(
6−T (z)

)
24

(
1−T (z)

)3 = 6
4!z

4+205
5! z5+5700

6! z6+. . .
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Introduction to asymptotic expansions

• Stirling:

Γ(n) ∼
(

2π

n

)1/2 (n

e

)n
[
1+

1
12

n−1+
1

288
n−2− 139

51840
n−3+. . .

]

• Taylor series:

1/Γ(n) = n+0.57721566 . . . n−0.65587807 . . . n2+. . .

• e.g. for n = 4, Γ(4) = 6: 3 terms of asymptotic expansion
give an absolute error < 10−6

• cf. the Taylor series - 3 terms give an absolute error > 5

• asymptotic expansion diverges for all n!
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Asymptotic expansion of P (n, n+k)

k type [n0] [n−1/2] [n−1] [n−3/2]

−1 tree P (n,n−1)

2ne2−nn−1/2ξ
1
2 0 −7

8 0

0 unicycle P (n,n+0)
2ne2−nξ

1
4ξ −7

6
1
3ξ −1051

1080

1 bicycle P (n,n+1)

2ne2−nn1/2ξ
5
12 − 7

12ξ
515
144 −28

9 ξ

ξ ≡
√

2π
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Unlabelled graphs

• much less is known about the unlabelled case

• the difficulties arise in distinguishing isomorphic graphs
Unicyclic graphs - 7 nodes Keith Briggs 2004 Sep 05 09:54

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33

Keith Briggs Connectivity of random graphs 14 of 25



Asymptotics for unlabelled unicycles

• I get that the number c(n, n) of connected unlabelled unicyclic
graphs behaves like

(
c(n, n)

dn
− 1

4n

)
n3/2 ∼

−0.4466410059+0.44311055235n−1+0.91158865326n−2+O(n−3)
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Geometric random graphs

Consider connectivity of nodes with a radio range ρ placed
uniformly and randomly in a bounded region under various
models:

• Poisson 1d model: the nodes exist on all of R with a exponential distribution of
separation with parameter λ, and a window of unit length is placed over them.
The number of nodes visible through the window is Poisson distributed

• fixed-n 1d model: there are exactly n nodes independently and uniformly placed
in [0, 1]

• Poisson 2d model: the nodes exist on all of R2 with a intensity λ, and a
finite-area window is placed over them The number of nodes visible through
the window is Poisson distributed

• fixed-n 2d model: there are exactly n nodes independently and uniformly placed
in a bounded region R

Notation:
. pdf=probability density function
. cdf=cumulative distribution function
. the notation is sloppy in not distinguishing a RV X and its values x

. [[x]] is the indicator function: 1 if x is true, else 0
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Theory for the Poisson 1d model

• λ is the intensity of nodes per unit length

• the pdf of the internode distance d is f(d) = λe−λd

• the cdf of the internode distance is F (d) = 1−e−λd

• the expectation of d is E[d] = 1/λ

• we now place a unit length window over R and assume that
n nodes are visible

• there are n−1 internode intervals, and the cdf of the maximum interval is
Fn−1(d) = (1−e−λd)n−1

• the cdf of the minimum interval is F1(d) = 1−e−nλd

• the pdf of the minimum interval is f1(d) = nλe−nλd

• the expectation of the minimum interval is E[d(1)] = 1/(2λ), so is half the
expectation of the internode distance

• the probability of full connectivity for the n nodes is thus approximately
(i.e. ignoring correlation and edge effects) Fn−1(ρ) = (1−e−λρ)n−1
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Exact theory for the fixed-n 1d model

• Let yk = x(k)−x(k−1) be the gaps (k = 2, . . . , n), with y1 = x(1)

0 1x(1)

y1

x(2)

y2

x(3)

y3
. . .

. . . x(n)

• their joint pdf is (for 1 6 m 6 n and
∑m

i=1 yi 6 1)

f(y1, y2, . . . , ym) =
n!

(n−m)!

(
1−

m∑
i=1

yi

)n−m

• if ci are constants such that
∑m

i=1 ci 6 1, then by integrating the pdf we obtain

Pr [y1 > c1, y2 > c2, . . . ] =

(
1−

m∑
i=1

ci

)n−1

• Boole’s law for the probability of at least one event Ai of n events A1, A2, . . . , An occurring

is

Pr

[
n⋃

i=1

Ai

]
=
∑

i

Pr [Ai]−
∑∑

i<j

Pr [AiAj]+· · ·+(−1)
n−1

Pr [A1A2 . . . An]
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Exact theory for the fixed-n 1d model (cotd)

• we don't care about y1, so we put c1 = 0

• using Boole's law, the probability that the largest yk exceeds
some constant ρ is

Pr
[
y(n) > ρ

]
= (n−1) Pr [y1 > ρ]−

(
n−1

2

)
Pr [y1 > c1, y2 > c2]+. . .

• thus

Pr [connected] = 1−
b1/ρc∑
i=1

(−1)i+1
(

n−1
i

)
(1−iρ)n

• note that for ρ > 1/2, this is exactly 1−(n−1)(1−ρ)n
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Probability of connectivity for the fixed-n 1d model

2, 5, 10, 20, 50 nodes
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Theory for the Poisson 2d model
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Theory for the Poisson 2d model

• λ is the intensity of nodes per unit area

• the pdf of the nearest neighbour distance d is
f(d) = 2πλde−λπd2

• the cdf of d is F (d) = 1−e−πλd2

• the expectation of d is E[d] = 1/(2λ1/2)

• the variance of d is (4−π)/(4πλ)

• the probability of a node being isolated (i.e. having no neigh-
bour within range ρ) is e−πλρ2
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Theory for the Poisson 2d model

we now place a window R of area A over R2

• the number of nodes visible will be Poisson distributed with mean λA

• Conditional on n nodes being visible, and if the nearest neighbour distances were
independent (which is not the case) the probability of no node being isolated

would be
(
1−e−πλρ2

)n

• there is no simple way to compute the probability of full connectivity. However,
since a necessary condition is that no node is isolated, the last expression is an
approximate upper bound for the fixed-n model and is plotted in red on the
following graph

• the blue curve is the asymptotic probability of the whole region R being covered
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The phase transition

• the critical radius is O((log(n)/(πn))1/2)

• for n = 100, we estimate ρ = 0.121; for n = 500, ρ = 0.0629

torus, 100 nodes
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Simulation results - torus, ρ = 0.1, 0.3
ρ=0.10
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