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Abstract

The accurate modelling of real-world networks has significant implications for
many areas of every day life. Our understanding of transport networks, the in-
ternet and world wide web, and the spread of diseases, could be dramatically
enhanced by improved modelling techniques. Here we examine a very general
concept, the exponential random graph (ERG). We derive the ERG model from
maximum entropy principles and assess its appropriateness as a generic tool for
network analysis and prediction. Both undirected and directed networks will be
considered. It will be seen that in certain simple examples the analysis is elegant
and the predictions unsophisticated. For less trivial cases we explore the theory
and applicability of Markov Chain Monte Carlo simulations. We will find that
simulations of up to 30 million steps may yield inconclusive results. Suggestions
for further research will therefore be made.
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Chapter 1

Exponential random graphs

“Home computers are now being called upon to perform
many new functions, including the consumption of
homework formerly eaten by the dog.”

Random quote, Doug Larson

1.1 Modelling networks

If we ask a group of people, such as the students in a class, which of the other
people in the group they consider to be friends, we may represent the information
gleaned as a social network. The students are represented as nodes and there is
a directed edge (i, j), from i to j, if person i considers person j to be a friend. An
example of such a network is given in figure 1.1. Some basic graph definitions
are given in table 1.1.

Networks, directed or undirected, can be used to represent a very wide va-
riety of self-interactive systems. Besides social networks modelling friendship
choices [66, 77], there are, for instance:

• Social networks representing

– business relationships between companies [62, 63]

– diseases spreading [43, 60]

• Computer and information networks like

– the internet [32]

– the world wide web [4, 12, 17, 49]
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Exponential random graphs Modelling networks

directed graph or
network

A directed graph or network is an ordered pair of disjoint sets
(V,E), where V is a non-empty set of nodes or vertices, and
E is a set of ordered pairs of nodes. The elements of E are
edges. An edge (i, j) is said to go from node i to node j. A
graph with n nodes is said to be on n nodes.

undirected An undirected graph or network is defined in the same way
as a directed graph, except that E now contains unordered
pairs of nodes. (Some authors consider a network to be
both directed and weighted, for example [92]. We do not.
And we do not consider weighted graphs here.)

adjacency matrix The adjacency matrix a of a graph with n nodes is the n× n

matrix where the value aij of the entry in row i and col-
umn j is the number of edges from i to j. (Note that an
undirected graph therefore has a symmetric adjacency ma-
trix.)

simple An undirected graph is simple if there is no more than one
edge connecting any pair of nodes.
A directed graph is simple if no more than one edge con-
nects any ordered pair of nodes. All graphs in this project
are assumed to be simple unless otherwise stated.

isomorphic Two graphs g1 and g2 are isomorphic if there is a permu-
tation mapping the nodes of g1 to g2 that preserves adja-
cency. In the sets (or ensembles) of graphs considered in
this project, isomorphisms will be allowed unless other-
wise stated.

self-loop A self-loop is an edge (i, j) such that node i = node j. All
graphs in this project are assumed to have no self-loops.

degree Undirected graph with no self-loops: The degree of a node
i is the number of edges of the form (i, j) where j is any
node.
Directed, no self-loops: The out-degree of node i is the num-
ber of edges (i, j) where j is any node. The in-degree of
node i is the number of edges (j, i) where j is any node.

null, complete The null graph on n nodes has no edges and the complete
graph on n nodes has every edge allowed [92]. (Some au-
thors may define the null graph to have no nodes as well.
We do not.)

Table 1.1: Some basic graph definitions
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Bartholemew
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Bob
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Rod

Tim

Figure 1.1: Example of a social network: friendship choices. (An arrow from a
node i to a node j means i considers j to be a friend.)
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• Traffic networks such as

– roads [56]

– railways [80]

– metros [57] (figure 1.2)

– aviation routes [5]

• And biological networks like

– food webs [19, 76, 65, 55]

– metabolic networks [52, 34, 85]

Our intention is to lay down a broad framework for the study of all networks.

1.1.1 Commonly observed features of real-world networks

Empirical observations of many kinds of network reveal numerous features that
are intuitively obvious. Firstly, there is typically a high level of reciprocation [68,
54, 22] (defined in table 1.3), higher than chance would seem to allow [66]. In fig-
ure 1.1, for example, we see that if one student i claims that another student j is a
friend, then it is rather likely that student j will claim that i is a friend. Intuitively
we may say that a person is unlikely to be friends with someone else if they don’t
get friendship in return. As a second example, consider road traffic networks.
If flow is allowed along a road between two locations, it is normally allowed in
both directions. But notice that there are situations that preclude reciprocation,
such as the social relationship of power [38, 39]. Essentially, if person i is more
powerful than person j, then j is not more powerful than i!

Another widely observed feature is transitivity (table 1.3). In 1970 Davis
found in an extensive empirical study of positive interpersonal affect [23] that
transitivity is the crucial factor in differentiating observed data from a pattern
of random edges. Transitivity is encapsulated by the old adage “A friend of a
friend is a friend”, and it is easy to see how it might arise - if a person i knows a
person j, and person j knows person k, then i may well be expected to know k.
On the other hand, the processes that lead to transitivity can also be somewhat
involved [83].

A third feature commonly seen is differential attractiveness [48]. In the friend-
ship pattern of figure 1.1, for instance, Bartholomew is significantly more popu-
lar, more attractive to the other students, than Tim. In the case of the world wide
web, some websites are far more popular than others. In food webs, certain an-
imals are much easier to prey on or catch. In aviation networks, certain cities
make more attractive holiday destinations. Many studies have shown that the
range of popularity of the nodes in various networks, which is given by the de-
gree distribution (see table 1.3), is by no means inherently random. Often the
degree distribution is seen to fit a power-law [3, 25, 64]. Examples of this include:

4
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• the world wide web [4, 12, 17]

• the internet [32, 87]

• telephone call graphs [1]

• networks of human sexual contacts [60]

A network with a power-law degree distribution is sometimes also called
scale-free [71]. The degree distribution may otherwise fit an exponential distri-
bution [5, 80] and sequences of greater complexity may also arise [5, 26, 69].

Arguably more important than any of the above features, however, is the fact
that many networks are not constant in time, that is, they are dynamic [10, 47,
89]. The world wide web is growing steadily [24], new roads are always being
built [56], and loyalties or friendships shift [53]. It is clear, then, that any attempt
to construct a general framework for modelling networks will require some pow-
erful tools.

1.2 Modelling networks: a brief history

How have networks been modelled to date? Until the development and spread
of computers, network modelling was somewhat restricted and the field has only
sprung to life comparatively recently. Having said that, the first truly general
model was introduced by Solomonoff and Rapoport in 1951 [84]. They consid-
ered the collection of all undirected graphs (without self-loops or multiple edges)
on a fixed number of nodes n on which edges existed with a constant probability
p that was independent of the nodes it connected. They thereby derived a man-
ner of modelling graphs that were in an obvious sense inherently random and
indeed their construction is known as the random graph model. It was studied
fairly extensively by Erdős and Rényi in the late 1950s and early 1960s [29, 30, 31].
Also called the Bernoulli model, it was moreover the first example of an exponen-
tial random graph (ERG) model. We will meet it again in chapter 2. ERG models
will be the focus of this project.

As we shall see, ERG models involve a discrete probability density function
containing an exponential family. This probability function is defined over a set
of graphs. Hence the terms exponential and random graph in the name of the model.

In 1981 Holland and Leinhardt classified the literature on social networks
prevalent at the time into three types: tests of randomness, pattern detection, and
measures of structure [46]. Table 1.2 gives examples of these types. Holland and
Leinhardt in addition drew attention to the paucity of statistical tools available
for social network analysis. They commented on the sparsity of papers that con-
sidered the fitting and estimating of parametric probability models for digraph
(directed graph) data and, building on the work of Besag (1974) [15], constructed

5
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Class of network Example Reference
Tests of randomness The random distribution of zero blocks

in an adjacency matrix
[91]

Pattern detection Clique-finding algorithms [74, 2]
Block-modelling procedures [16]
Spatial representations of digraphs [59]

Structural measures Connectivity [61, 13]
Centrality [67, 36, 37]

Table 1.2: Social network classification as at 1981 [46]

a fairly specific model of this kind to “begin to fill the gap”, as they saw it. Their
construction was the second example of an ERG model.

They called it the p1 model. Sometimes ERG models are called p∗ models as a
generalisation of the p1 model [88], although in fact p∗ models are slightly more
general than ERGs.

In the mid 1980s Frank and Strauss [35] developed ERG models substantially,
and further developments were made by others throughout the 1990s [88, 6]. In
the last five years or so an increasing number of physicists have conducted the-
oretical studies of specific cases [14, 75, 18]. ERG models are now in common
use within the statistical and social network analysis communities as a practical
aid and there are even standard computer packages available for simulating and
manipulating them, such as ERGM, PREPSTAR, and SIENA [83, 82].

But other network models have also emerged since the 1980s, which, like ERG
models, are not defined as a single network but as a probability distribution over
many possible networks. Examples are the small-world model [90] and various
different preferential attachment or scale-free models [11, 27], which respectively
model transitivity and power-law degree distributions. These two models (but
not necessarily ERG models) begin with the intention of modelling real-world
networks with particular properties. Mechanisms that may be responsible for
these properties are identified and incorporated into the model and the networks
produced are typically rewarded for their similarity to the real-world network
and used as a tool for further modelling.

As a general framework for network modelling, however, the only candidate
to have so far emerged is the ERG model, a rigorous derivation of which will
now be presented. How we actually use the model is deferred to section 1.4 and
beyond.

An excellent discussion of network modelling is given in [71].

6
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1.3 The ERG Model

Suppose we have a real-world network or graph (the terms will be used inter-
changeably). We define its graph observables (or simply observables) to be its mea-
surable properties. (In the literature the observables are sometimes, slightly mis-
takenly, called the sufficient statistic [82, 50].) Examples of observables are the
number of edges or the number of nodes of degree 2 and more are given in ta-
ble 1.3. The network may not be constant in time, but we shall assume that it is
changing slowly enough over a given period to have essentially constant expected
values for its graph observables over that period. For convenience the number of
nodes will be assumed to be fixed. There is no reason in principle why this has
to be so.

Imagine that we have taken one or more measurements from the network for
one or more of its graph observables. For each of these observables we find the
average value of its measurements. We shall assume that these average values
are the expected values for the real-world network for the observables in ques-
tion, since we have nothing else to use as estimates for their expected values.
We would like to say as much as possible about the network given this limited
knowledge of it. Then we have a problem of inference from incomplete informa-
tion.

Now there is a prominent ‘Bayesian’ school of thought, popularised above
all by Edwin Jaynes [51], which considers such problems from a purely statisti-
cal point of view and which maintains that the most correct manner of solving
them resides in maximising an entity called Gibbs’ entropy or simply entropy. In
statistical mechanics this approach is already known to give good results, and
the extension to general network problems is in many ways quite natural [72].
Therefore we shall also adopt this approach. (Our derivation of the ERG model
will in fact parallel the derivation of the Boltzmann distribution in statistical me-
chanics [42].)

We define the ensemble G for our real-world network to be the collection of
possible configurations that it may reasonably be expected to attain. This obvi-
ously includes any observed configurations of the network! If we know that it
has n nodes and there is no reason to think that n will change, or change signifi-
cantly, and if we know that it is undirected, then a sensible choice for G might be
all undirected graphs on n nodes.

Thus, we have one or more measurements of one or more graph observables,
these have given us expectation values for the observables in question, and we
suppose that we have chosen a sensible ensemble G. (Indeed a summary of the
ingredients of the model are given in table 1.4.) We now use these expectations to
derive a probability distribution P over the ensemble. Our intention is to choose
P so that, for the observables that we have taken measurements of, expected
values over the ensemble equal their measured estimates. To do this, we will em-
ploy the method of Lagrange multipliers to maximise the entropy, building in the
conditions on the expectations and a normalising condition for P as constraints.

7
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Exponential random graphs The ERG Model

To be more specific, let {xi}, i = 1, 2, . . . , r be the observables that we have
chosen to measure. Denote by 〈xi〉 the measured estimate of the expectation of
xi. Also, let xi(g) be the value of an observable xi for a graph g. Finally let E[]
denote the expectation operator. Then for the expectation conditions or constraints
we write

E[xi] =
∑
g∈G

P (g)xi(g) = 〈xi〉 (1.1)

for i = 1, 2, . . . , r. The normalising condition is simply∑
g∈G

P (g) = 1, (1.2)

and Gibbs’ entropy is defined as

S = −
∑
g∈G

P (g) ln P (g). (1.3)

We are now in a position to introduce Lagrange multipliers to maximise S subject
to constraints (1.1) and (1.2). Before doing so, it is instructive to give an intuitive
understanding of why this is worthwhile. In maximising the entropy the effect
is to make as random as possible, given our limited knowledge of just a few
expectation values, those observables that have no dependence on what we have
measured. This is the crucial advantage that ERG models have over other models.
ERG models do not unknowingly mess around with graph properties that we are
not measuring or ‘controlling’. Notice further that by maximising the entropy
we are circumventing the issue of having a vastly underdetermined problem. In
choosing P to satisfy (1.1) and (1.2) there are, in most cases, far more degrees of
freedom than constraints.

Let the Lagrange multipliers be α, {θi} for i = 1, 2, . . . , r. Then the maximum
entropy is achieved for the distribution satisfying

∂

∂Pθ(g)

S + α

1−
∑
g∈G

Pθ(g)

+
r∑

i=1

θi

−〈xi〉+
∑
g∈G

Pθ(g)xi(g)

 = 0 (1.4)

for all graphs g ∈ G where the subscript θ denotes parametric dependence on the
θi. We have included the constraints in such a way as to avoid unattractive minus
signs later. Equation (1.4) yields

lnPθ(g) + 1− α−
r∑

i=1

θixi(g) = 0 (1.5)

or alternatively

Pθ(g) =
eHθ(g)

Zθ
(1.6)

10



Exponential random graphs Using the ERG model

where Hθ(g) is called the Hamiltonian (a term borrowed from statistical mechan-
ics) of g

Hθ(g) =
r∑

i=1

θi xi(g) (1.7)

and Zθ = e1−α is a normalising constant called the partition function. Substitut-
ing (1.6) into (1.2) gives

Zθ = e1−α =
∑
g∈G

eHθ(g). (1.8)

We say that a parameter θi is coupled to a graph observable xi if it is the co-
efficient of xi in the Hamiltonian. Now we may rewrite the expectation con-
straints (1.1) as

〈xi〉 =
1
Zθ

∑
g∈G

xi(g) exp

(
r∑

i=1

θixi(g)

)
(1.9)

for i = 1, 2, . . . , r. We may further re-express (1.9) as

〈xi〉 =
1
Zθ

∂

∂θi
Zθ =

∂

∂θi
(lnZθ) =

∂

∂θi
Fθ, (1.10)

where Fθ = ln Zθ is defined as the free energy.

Equations (1.6) to (1.9) define the ERG model. (The normalising condition is
included in the model as equation (1.8).) To initiate the model, as it were, we first
solve the expectation constraints (1.9) for the θi. This allows us to calculate the
Hamiltonians in (1.7), which in turn allows the calculation of Zθ (and α, though
we never use α explicitly) in (1.8). And now we can find the probabilities in (1.6).
Throughout the text we shall refer often to the idea of ‘initialising’ the model, by
which we will mean solving both the expectation constraints and finding the par-
tition function. We shall call a specific instance of the ERG model an ERG model.
The equations of the ERG model are collected together for ease of reference in
table 1.5.

The expectation constraints (1.9) consist of r equations in r unknowns. This
sounds sensible enough but does not in itself guarantee the existence of a solu-
tion. It will be of practical significance for us to be aware of the kinds of solutions
that are possible. We would like to know, for example, if it is possible in some
cases for there to be no solutions? Can there be a unique solution? If so, when? If
there is more than one solution, which should we choose? Can there be infinitely
many? Some of these questions will be raised again in chapter 4.

1.4 Using the ERG model

We have derived the model to possess specific expectation values over the ensem-
ble for those graph properties that we have measured. These expectation values
have been set to equal our measured estimates. Then, one way to use the model

11



Exponential random graphs Using the ERG model

normalising constraint
∑

g∈G Pθ(g) = 1

expectation constraints 〈xi〉 = 1
Zθ

∑
g∈G xi(g) exp [

∑
i θixi(g)] for

i = 1, 2, . . . , r when there are r observables

expectation constraints in
terms of free energy

〈xi〉 = 1
Zθ

∂
∂θi

Zθ = ∂
∂θi

Fθ for i = 1, 2, . . . , r when
there are r observables

free energy Fθ = ln Zθ

probability formula Pθ(g) = eHθ(g)

Zθ

Hamiltonian Hθ(g) =
∑r

i=1 θi xi(g) when there are r observables

partition function Zθ = e1−α =
∑

g∈G eHθ(g)

Table 1.5: The ERG machinery: Equations of the model

is to calculate the expectation value Eθ[x] over the ensemble for a graph property
x that we have not measured. Our calculated value would be

Eθ[x] =
∑
g∈G

Pθ(g)x(g). (1.11)

This would be the best prediction for Eθ[x] given our limited knowledge of the
network, owing to the derivation of the model from maximising entropy [72].

The probability attached to a graph in the ensemble may be thought of as the
probability of our real-world network attaining that particular configuration at
any given time. Typically we will have a large ensemble so these probabilities
are likely to be very small. It may therefore be more meaningful to not consider
individual probabilities but rather to consider their ratios. We may like to know,
for instance, if graph g1 is more likely than graph g2. We would find out by
computing

Pθ(g1)
Pθ(g2)

=
eHθ(g1)/Zθ

eHθ(g2)/Zθ
= eHθ(g1)−Hθ(g2). (1.12)

Clearly, then, Pθ(g1) > Pθ(g2) if Hθ(g1) > Hθ(g2). Observe that the only real com-
putation now required is to find for g1 and g2 the values of the graph properties
that we have chosen to measure (assuming that θ has been found from solving
equation (1.9)).

But with a very large ensemble it is still not terribly meaningful to consider
specific graphs. If the ensemble G is all undirected graphs on n nodes, then the
order of G is 2(n

2), which, for large n, is simply colossal. The corresponding prob-
abilities over the ensemble will then in all likelihood be absolutely tiny. It may

12



Exponential random graphs A look ahead

therefore make sense to consider collections of graphs satisfying a particular con-
dition. For example, we may wish to estimate the proportion T of the time that
our real-world network has more than twice the expected number of edges. In
fact, if m(g) denotes the number of edges of a graph g ∈ G and Eθ[m] is the
expected number of edges over the ensemble, we can write

T =
∑
g∈G

m(g)>2Eθ[m]

Pθ(g). (1.13)

This is a sensible application, notwithstanding the computational difficulties that
may be involved for a large ensemble. Computational difficulties will be dis-
cussed in chapter 5.

1.5 A look ahead

Some ERG models may be simplified sufficiently to be considered exactly sol-
uble. We shall be more precise in chapter 2 when we discuss several examples
of such models. In chapter 3 we will systematically construct two new soluble
models in seeking to create a general method for the construction of soluble mod-
els. We shall return in chapter 4 to the issue of when solutions may exist to the
expectation constraints (1.10) and how to find them, resorting in particular to a
well-known function, the likelihood. The final chapter will focus on the extensive
computation usually needed to solve ERG models and will end with a real-world
application.

13



Chapter 2

Soluble models

“The sciences do not try to explain, they hardly even try to interpret,
they mainly make models. By a model is meant a mathematical construct
which, with the addition of certain verbal interpretations, describes
observed phenomena. The justification of such a mathematical construct
is solely and precisely that it is expected to work.”

John von Neumann

2.1 What should we measure?

Imagine we have a particular real-world network and that we want to model it.
We have the ERG machinery, that is, equations (1.6) to (1.9), at our disposal and
we wish to set it in motion. Which graph observables xi should we measure?
Ideally we should measure those observables that we are most interested in pre-
dicting or learning about. This is because, if we want to ask for the probability of
a graph with specific values for specific observables, equation (1.6) only allows
this if the observables are in the Hamiltonian, that is, if they are the observables
for which we have taken actual measurements. (But notice that we can still find
expected values over the ensemble for observables for which we don’t have ac-
tual measurements.)

It should also be borne in mind that the model is made better by having more
observables (because then we provide it with more information), so we should
theoretically have as many as possible. Now a directed network on n nodes is
completely defined by the number of edges between each ordered pair of nodes.
There are 2

(
n
2

)
such pairs. The model would attain its greatest theoretical accu-

racy then, if we had a separate observable for each of the 2
(
n
2

)
ordered pairs of

nodes. But, for example, the world wide web has billions of static nodes [41, 8],
which would mean billions of billions of observables. We would therefore have
to solve billions of billions of expectation constraint equations (equation (1.9)) to
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Soluble models Measuring the total number of edges

be able to initiate the model. And even if we did do this the model would es-
sentially be useless because the calculation of Pθ(g) for any g would itself require
billions of billions of calculations. This computational restriction would remain
severe for any sizeable subgraph of the world wide web and large undirected
networks will face similar restrictions.

Finally it may be difficult to take measurements of certain observables for a
large network. The information may just not be available or may take so long to
acquire as to be out of date before it can be used! (The idea of modelling networks
with changing expected values for their observables was mentioned at the start
of section 1.3.)

Thus, in practice, our choice of observables will be determined by what we
want to predict or learn about, how good a model we want, how powerful our
computers are, and what it is possible to measure. It should further be noted
that a better model is likely to result from taking measurements of a real-world
network at several different points in time, instead of just once, for then our esti-
mated expectations for the observables will probably be more accurate.

2.2 Measuring the total number of edges

We have already mentioned the Bernoulli model (section 1.2) as the first ERG
model to be created. To motivate a proper description of it, we suppose, as ever,
that we have a real-world network and wish to model it. We suppose, further,
that the network has n nodes and is undirected with no self-loops or multiple
edges, and that we have chosen, for whatever reason, to consider only one graph
observable, namely the total number of edges m. We denote by θ the parameter
coupled to m in the Hamiltonian. A sensible choice for the ensemble G is all
undirected graphs on n nodes, with no self-loops or multiple edges, and we make
this choice. The ERG model subject to these assumptions is then the Bernoulli
model and it has the attractive property of being exactly soluble.

Definition 2.1. An ERG model is exactly soluble if both the partition function Zθ

(equation (1.8)) and the expectation constraints (equation (1.9)) may be simplified enough
as to not involve a sum over the ensemble.

We derive these simplified equations for the Bernoulli model now, using ideas
in [72].

The Hamiltonian is just
Hθ(g) = θm(g) (2.1)

where m(g) is the number of edges of a graph g ∈ G. Since the number of edges
of an undirected graph g may be defined in terms of its adjacency matrix a as

15



Soluble models Measuring the total number of edges

m(g) =
∑

i<j aij , we may simplify the partition function as follows:

Zθ =
∑
g∈G

eHθ(g) =
∑

{aij}∈G

exp(θ
∑
i<j

aij) =
∏
i<j

1∑
aij=0

eθaij

=
∏
i<j

(1 + eθ) = (1 + eθ)(
n
2). (2.2)

This is of course our expression for Zθ. Next we simplify the expectation con-
straint (1.10):

〈m〉 =
∂

∂θ
(lnZθ) =

∂

∂θ

[(
n

2

)
ln(1 + eθ)

]
=

(
n

2

)(
1

e−θ + 1

)
, (2.3)

and this is our expression for 〈m〉. It may be solved uniquely for θ, thereby solv-
ing or initialising the entire model, since we can then immediately calculate Zθ.
We have:

θ = − ln

[(
n
2

)
− 〈m〉
〈m〉

]
. (2.4)

It is now easy to find the probability of a graph g in the ensemble. All we need
to know is the number of edges m(g). Observe that if θ < 0 then the null graph
has the biggest Hamiltonian and is therefore the most likely graph. Similarly
if θ > 0 the most likely graph is always the complete graph. If the estimated
expectation 〈m〉 is half the maximum possible number of edges, that is, if 〈m〉 =
1
2

(
n
2

)
, then θ = 0 and all graphs are equally likely. So the model does not give

very sophisticated predictions. But this is to be expected - our assumptions were
no more sophisticated.

Another point of interest concerns our observed graphs. If we have one ob-
served graph gobs, and if m(gobs) 6= 1

2

(
n
2

)
, gobs cannot be the most likely graph

unless it is either the null graph or the complete graph. An experienced statisti-
cian may not be surprised by such a fact but it struck me as sufficiently counter-
intuitive to be worth drawing attention to. More generally, an ERG model based
entirely on a number of observed configurations of a real-world network, and
designed to mimic that network, does not necessarily make any of the observed
configurations the most likely.

Conventionally the parameter θ is re-expressed in terms of p = 1
e−θ+1

, giving
〈m〉 =

(
n
2

)
p by (2.3). Moreover we may write the probability of a graph g ∈ G as

Pθ(g) =
eθm(g)

Zθ
=

eθm(g)

(1 + eθ)(
n
2)

= pm(g)(1− p)(
n
2)−m(g). (2.5)

Hence we may interpret P (g) as the probability for a graph in which each of the(
n
2

)
possible edges appears with independent probability p.
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Soluble models Some graphical examples

The Bernoulli model has been widely studied since its introduction in 1951 [84]
and has the advantage of being exactly soluble for many of its average proper-
ties [29, 30, 31]. More recent papers have focused on its inadequacies as a model
of real-world networks, particularly in relation to clustering and its degree distri-
bution [86, 3]. Real-world networks typically show strong clustering [90, 89] and
power-law degree distributions [4, 32, 17], whereas the Bernoulli model shows
weak clustering and a Poissonian degree distribution. Attempts have been made
to adjust and extend the model to incorporate such real-world features [70, 71].
The focus of this project, the ERG model, is one such generalisation.

2.3 Some graphical examples

As a complement to the theory discussed so far, we present some illustrations in
this section. Firstly, we consider a modified version of the Bernoulli model. If
the graphs in the ensemble of the Bernoulli model are on n nodes, then there are
2(n

2) of them, which is a prohibitively large number, even for comparatively small
n. Now the Bernoulli model has only one graph observable, the total number of
edges. So, instead of all undirected graphs on n nodes, a less redundant ensemble
would be all non-isomorphic undirected graphs on n nodes. This ensemble is much

smaller. (It has approximately 2(
n
2)

n! graphs for large n [81]). It is also an ensemble
which I had ready access to, as output from a python program by my supervi-
sor, Keith Briggs. The ensemble (on 4 nodes) is shown in figure 2.1. I wrote a
python program (see appendix B) to use this ensemble (on 4 nodes) to calculate,
directly from equations (1.6) to (1.8), the probabilities of each of the graphs when
the observable was the number of edges. This enabled me to plot the whole dis-
tribution for a range of values of the parameter θ (see figure 2.2). I repeated this
when the observable was the number of twostars, plotting the whole distribution
for a range of values of its parameter, which I denote by α to avoid confusion
with the θ of the previous sentence (see figure 2.3). I repeated this again for the
model with both edges and twostars as observables (with parameters θ and α re-
spectively). I set θ = 0.1 and plotted the distribution for a range of values of α to
produce figure 2.4.

Notice in figure 2.2 that for θ < 0 a graph becomes more likely the fewer edges
it has, just as we saw in the traditional Bernoulli model (section 2.2). The reason
is the same as it was there - for θ < 0 a graph with fewer edges will have a larger
Hamiltonian, hence a larger probability. Similarly, for θ > 0, we can understand
why the graphs in figure 2.2 become more likely as the number of edges in the
graph increases. Exactly the same kind of arguments allow us to understand the
range of behaviour shown in figure 2.3, where the observable is the number of
twostars.

Figure 2.4 is more interesting because it shows the interaction of these two
observables. Nevertheless it is easy to make sense of the pictured distributions
by similar reasoning. The value of θ is fixed at 0.1, which is positive, so that
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1 2 3 4

5 6 7 8

9 10 11

Figure 2.1: All non-isomorphic undirected graphs on 4 nodes (isolated nodes not
shown, hence null graph produces an empty box). The number in the top left
corner of each box is the graph number on the horizontal scales in the bar charts
of figures 2.2 to 2.4.
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Figure 2.2: Observable: edges. Pictures are for a range of values of the parameter
θ. The graph number is explained in figure 2.1.

18



Soluble models Some graphical examples

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

Graph number

P
ro

ba
bi

lit
y 

of
 g

ra
ph

 ( α
=

−
0.

2)

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

Graph number

P
ro

ba
bi

lit
y 

of
 g

ra
ph

 ( α
=

−
0.

1)

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

Graph number

P
ro

ba
bi

lit
y 

of
 g

ra
ph

 ( α
=

0.
0)

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

Graph number

P
ro

ba
bi

lit
y 

of
 g

ra
ph

 ( α
=

0.
1)

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

Graph number

P
ro

ba
bi

lit
y 

of
 g

ra
ph

 ( α
=

0.
2)

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Graph number

P
ro

ba
bi

lit
y 

of
 g

ra
ph

 ( α
=

0.
3)

Figure 2.3: Observable: twostars. Pictures are for a range of values of the param-
eter α. The graph number is explained in figure 2.1.
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Figure 2.4: Observables: edges and twostars. Pictures are for a range of values
of the two-star parameter α with the edge parameter fixed at θ = 0.1. The graph
number is explained in figure 2.1.
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graphs with more edges will be, if you like, rewarded, that is, made more likely.
But if α < 0, a graph with fewer twostars will also be rewarded. So graphs with
more edges but at the same time fewer twostars will be the most rewarded. By
these ideas, and by referring to the key of graphs (figure 2.1) the reader should
find figure 2.4 to be plausible.

Whether any of the models in this section are exactly soluble is unknown. I
suspect that they are not, because the ensemble is not easy to manipulate alge-
braically. However, there do exist other ERG models that are soluble, and we turn
our attention to these.

2.4 Further examples

Newman and Park [72] discuss other examples of exactly or partially soluble
models. The ensemble of the Bernoulli model may be extended to allow mul-
tiple edge graphs, or it may be changed to directed graphs, and the solubility is
not lost. To use these other ensembles we would, of course, have to be dealing
with a real-world network for which the ensemble was appropriate as possible
states or configurations of the network. They also consider modelling the degree
sequence. To be specific they take as observables the degree of every node in the
graph, and, as an ensemble, all undirected graphs on n nodes with no self loops
or multiple edges. Then, if ki(g) is the degree of node i in a graph g, the degree
sequence of g is the set with elements ki(g) for i = 1 to n, and the Hamiltonian
may be written

Hθ(g) =
n∑

i=1

θiki(g). (2.6)

Thus there is one parameter θi for every node i.

Now for an undirected graph with adjacency matrix a, ki(g) =
∑

j aij , where
the sum is over all nodes j. This allows the Hamiltonian to be re-expressed:

Hθ(g) =
∑
ij

θiaij =
∑
i<j

(θi + θj)aij . (2.7)

Hence the partition function is

Zθ =
∑
ij

exp

∑
i<j

(θi + θj)aij


=

∏
i<j

1∑
aij=0

e(θi+θj)aij =
∏
i<j

(1 + e(θi+θj)) (2.8)

20



Soluble models Further examples

and the expectation constraints (1.10) become

〈ku〉 =
∂

∂θu
(lnZθ) =

∂

∂θu

∑
i<j

(1 + e(θi+θj))


=

∑
i6=u

e(θi+θu) (2.9)

for u = 1, 2, . . . , n.

Newman and Park [72] make no comment on the solution of the constraint
equations (2.9) but we observe here that they consist of n nonlinear equations and
that it is unlikely in general that an analytic solution exists. The equations may be
solved numerically (results in chapter 4 tell us there is a solution) but for large n
even this may not be practical. It is a good idea, then, to cut down the number of
observables and to make this number independent of n. We could, for example,
take as observables the number of nodes of degree zero, one, two, and so on,
up to nine, say. With these ten observables we would still gain insight into the
probable degree distribution of the real-world network, whilst simultaneously
reducing the amount of computation drastically if the network is large.

Perhaps half a dozen other ERG models have been solved in the past few
years, either exactly or exactly in some limit on the size of the graphs. Not many
of these have names yet. A sensible policy would be to name them, as concisely as
possible, after their ensemble and observables. It would take too long to describe
them all but a few details and some references can be found in table 2.1, where I
have introduced my own provisional naming scheme.
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Chapter 3

Two new models

“In science one tries to tell people, in such a way as to
be understood by everyone, something that no one ever
knew before. But in poetry it’s the exact opposite.”

Paul Dirac

3.1 Grappling

As I grappled with the sophisticated conceptual framework for ERG models, it
occurred to me that any suitably simple pattern in the values of the observables
might give rise to an exactly soluble model. I was led to consider a single graph
observable x taking values in arithmetic progression over the ensemble G. To
my excitement a soluble model ensued as well as ideas about how to interpret it
and greater understanding of the power of the ERG machinery. Another model
followed. I outline my results in this chapter.

3.2 The Terry 1 model

Suppose we have one observable x and an ensemble G of n graphs over which x
takes values in arithmetic progression:

a, a + d, a + 2d, . . . , a + (n− 1)d, (3.1)

for constants a and d. Then the partition function (1.8) becomes

Zθ =
∑
g∈G

eθx(g) =
n−1∑
i=0

eθ(a+id)

= eθa
n−1∑
i=0

(eθd)i = eθa 1− eθnd

1− eθd
(3.2)
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1 2 3

4 5 6

Figure 3.1: The ensemble of the Terry 1 model on 6 nodes (isolated nodes not
shown, hence null graph produces an empty box)

where, on the last step, we have used the formula for the partial sum of a geo-
metric progression. The expectation constraint (1.10) is

〈x〉 =
∂

∂θ
(lnZθ) =

∂

∂θ

[
θa + ln(1− eθnd)− ln(1− eθd)

]
= a +

deθd

1− eθd
− ndeθnd

1− eθnd
, (3.3)

which may be solved numerically for θ to initiate the model (results in chapter 4
ensure that a solution exists).

Definition 3.1. The generalised Terry 1 model is given by equations (3.1) to (3.3).

What kind of ensemble could give rise to an arithmetic progression in a graph
observable, and what precisely would the observable measure? One possibility
for the ensemble is the set of all non-isomorphic undirected graphs on n nodes
possessing a single non-intersecting walk of any length and otherwise isolated
nodes. The observable would then be the length of the walk and would take the
values 0, 1, 2, . . . , (n− 1). An example of this possible ensemble, for n = 6 nodes,
is shown in figure 3.1.

Definition 3.2. The Terry 1 model on n nodes is such that:

• The ensemble is all non-isomorphic undirected graphs on n nodes possessing a
single non-intersecting walk of any length and otherwise isolated nodes

• The observable is the length of the walk and takes values 0, 1, 2, . . . , (n− 1)

• The defining equations are (3.1) to (3.3) where a = 0 and d = 1
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For arithmetic progressions taking values different to 0, 1, 2, . . . , (n− 1) there
may be no simple ensemble-observable interpretation. This raises an important
question. If we don’t even know what the ensemble or observable are, how can
we be sure that any exist that will give us the particular arithmetic progression
we have in mind?

To answer this, we must think back to how we derived the ERG model in gen-
eral (section 1.3). Suppose we were to change our assumption that the ensemble
G was a set of graphs to a new assumption that G could be a set of anything. And
suppose we define the set of observables to be those properties of the elements of
G that we can measure. Then the derivation of the model remains valid, except
that it is no longer necessarily a model of exponential random graphs but of just
about anything, if I may be excused for sounding imprecise. ERG models are a
special case of a much deeper strand of thought, but it wasn’t until I used the
ERG machinery to construct something that may not actually be an ERG model
that I fully appreciated this.

As for real-world networks, or situations, that the Terry 1 model could repre-
sent, we could say this: for a = 0 (centimetres), d = 1 (centimetre), a + (n− 1)d =
500 (centimetres), the length of the walk could give the length of a crawl by a cer-
tain snail on a particular morning, to the nearest centimetre, assuming any length
of crawl from 0 to 500cm were possible. Unfortunately for θ < 0, the most likely
crawl predicted by the model will always be the shortest one, and for θ > 0 it will
be the longest one. (For θ = 0 all crawls become equally likely.) Then we have
the same problem as in the Bernoulli model - the extreme situations or graphs are
always the most likely. It would be preferable if we could adjust the values of the
observable to take into account the deviation of the possible situations from the
expected situation 〈x〉. Such deliberations led me to construct a new model.

3.3 The Terry 2 model

Suppose we have a real-world snail, then, and suppose further that we have mea-
sured a few of its morning crawls and averaged them to find an estimate 〈x〉 for
their expected value. We also know (somehow) that the possible crawl lengths
are from a units to a + (n − 1)d units to the nearest multiple d > 0 of some
unit measure of length. (So the possible crawl lengths are just the values in the
sequence (3.1).) It must be that a 6 〈x〉 6 a + (n − 1)d and for convenience we
round 〈x〉 to the nearest crawl length in the set of possible crawl lengths just men-
tioned. So 〈x〉 is rounded to a + md, say, for some m satisfying 0 6 m 6 n − 1.
Now consider the new sequence or observable

|a− 〈x〉|, |a + d− 〈x〉|, . . . |a + (n− 1)d− 〈x〉|, (3.4)

which may also be written

md, (m− 1)d, (m− 2)d, . . . , d, 0, d, . . . , (n− 1−m)d. (3.5)

25



Two new models The Terry 2 model

The observable taking these values measures the distance of possible crawl
lengths from the estimated average. The ensemble G will naturally be a set over
which an observable may take these values, and one possible ensemble (where
a = 0 and d = 1) is once again the ensemble of the Terry 1 model (definition 3.2).
The partition function (1.8) is

Zθ =
∑
g∈G

eθx(g) =
m∑

i=0

(eθd)i +
n−1−m∑

i=1

(eθd)i

=
eθd + 1− eθd(m+1) − eθd(n−m)

1− eθd
, (3.6)

and the expectation constraint (1.10) is

〈x〉 = a + md =
∂

∂θ
(lnZθ)

=
deθd − d(m + 1)eθd(m+1) − d(n−m)eθd(n−m)

eθd + 1− eθd(m+1) − eθd(n−m)
+

eθd

1− eθd
. (3.7)

Definition 3.3. The generalised Terry 2 model is given by equations (3.4) to (3.7).

Definition 3.4. The Terry 2 model on n nodes is such that:

• The ensemble is all non-isomorphic undirected graphs on n nodes possessing a
single non-intersecting walk of any length and otherwise isolated nodes

• The length of a real-world ’walk’ (where walks may be from length 0 to n − 1) is
estimated by averaging some observations. For convenience this average is rounded
to the nearest unit, say m

• The observable on a graph g in the ensemble is the absolute difference of the length of
the walk on g and the estimated average m; it takes values m,m−1, . . . , 1, 0, 1, . . . ,

n− 1−m

• The defining equations are (3.4) to (3.7) where a = 0 and d = 1

The distribution given by the generalised Terry 2 model will be ‘nice’ if equa-
tion (3.7) has a negative solution for θ (we discuss when this can exist in sub-
section 3.3.1). In other words, the probability that a crawl length differs from
the estimated expected crawl 〈x〉 by a given amount, will grow smaller as this
amount grows bigger. But we should be careful here. The estimated expected
crawl length is unlikely to be a very accurate reflection of the true expected crawl
length unless we average a high number of measured crawls. Only then can we
have confidence in our model.

Suppose we have such confidence. Then a ‘nice’ distribution, combined with
a knowledge of snail feeding habits, might be used by a biologist to gain some
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insight into more general behaviour, although the distribution is probably too
simple for any such insight to be really significant.

Notice that whilst we derived the model by thinking about snails, it could
be interpreted in other ways. For example, we might have an estimate for the
expected height of a man in a given age range in a given country as well as es-
timates for the shortest and tallest heights in this group (and suppose we don’t
necessarily know that the heights are normally distributed). With this informa-
tion, and a choice for d and n, we can look for a solution for θ < 0 in equation (3.7)
in order to initiate the model. Assuming the solution to (3.7) was negative, the
model could be applied in some situations. If, for instance, the producer of a
Snow White pantomime wanted an idea of how widely he would have to adver-
tise to fill the seven dwarf parts, he could acquire this by recourse to the model.
The model only gives probabilities of distances from the estimated expectation,
so that in asking what proportion of people might be short enough for dwarfs,
the producer would be asking for giants as well. So he could use the proportion
he gets as an upper bound.

3.3.1 Negative solutions and ‘nice’ distributions

We now ask if a solution θ < 0 may indeed exist for equation (3.7)? We shall
restrict our attention to the Terry 2 model although I believe similar comments
may be made about the generalised model. So, we let a = 0, d = 1, n ∈ N,
m ∈ N ∪ {0}, and 0 6 m 6 n− 1. Further, let y = eθd = eθ. Then we may rewrite
the expectation constraint (3.7) as:

m =
y − (m + 1)ym+1 − (n−m)yn−m

y + 1− ym+1 − yn−m
+

y

1− y
. (3.8)

We rearrange this and define a new function f(y):

f(y) =
y − (m + 1)ym+1 − (n−m)yn−m

y + 1− ym+1 − yn−m
+

y

1− y
−m = 0. (3.9)

Now if there is a solution y∗ to f(y) = 0 on the interval 0 6 y < 1, then
there will be a solution θ < 0 since θ < 0 ⇔ 0 6 y = eθ < 1. In figure 3.2
we plot f(y) against y on y ∈ [0, 1) for n = 1000 and for a range of values of
m. Clearly solutions can exist! However, even for m small compared to n, these
solutions y∗ are extremely close to 1 and they get closer to 1 as m increases. This
causes two problems. First, it makes the solutions difficult to find. And second,
the corresponding θ values, though of course negative, will get very close to zero.
But if θ is close to zero then all Hamiltonians will be close to zero and the resulting
probability distribution will be rather flat and arguably not very interesting. In
figure 3.3 further pictorial examples demonstrating the possibility of negative θ
solutions are shown next to the ‘nice’ distributions they give. Notice how, as m
increases, the distribution does indeed become flatter.

27



Two new models The Terry 2 model

m=50

0.0 0.2 0.4 0.6 0.8 1.0
−50

−40

−30

−20

−10

0

10

20

30

y

f(
y)

m=100

0.90 0.92 0.94 0.96 0.98 1.00
−100

−50

0

50

100

150

200

250

y
f(

y)

m=200

0.980 0.985 0.990 0.995 1.000
−200

−150

−100

−50

0

50

100

150

y

f(
y)

Figure 3.2: Terry 2 model: Demonstration that negative θ solutions may exist
(corresponding to solutions for y = eθ between 0 and 1). Here n = 1000.

The reader may be tempted to believe that the story ends there. (The author
certainly was!). But it does not. The observant reader may also wonder why,
in figure 3.3, the sequence of m values considered is 10, 20, 29. At first sight it
looks pretty odd. For m = 30 I made many attempts to find the place where
f(y) crosses the horizontal axis, all in vain. For some time I was convinced that
there was a vertical asymptote at y = 1 but eventually came to believe otherwise.
Finally I managed to establish the following:

Theorem 3.1. The number of solutions to the expectation constraint of the Terry 2 model
for θ < 0 depends on the value of m. In fact:

A If m = 0 then θ = −∞ is a solution

B If 1 6 m < n− 1 and n > 5 there exists a real number kn ∈
(

1
n , n−1

n

)
, dependent

on n, such that for all m < knn there is at least one finite solution θ < 0 to the
expectation constraint. For large n, kn ≈ 2−

√
2

2 = 0.293 to 3 d.p.

C If m = n− 1 then there are no solutions for θ < 0

The proof of this is somewhat long and is deferred to appendix A. Within the
proof it is seen that there is not a vertical asymptote at y = 1. The limit limy→1 f(y)
exists and is finite. It is positive for m < knn and negative for m > knn. Moreover,
the function f(y) appears to be strictly increasing on (0, 1). Therefore:

Conjecture 3.1. For n > 5, a solution θ < 0 exists only for m < knn. When it does
exist it is unique.

Some comments on this conjecture may be found in appendix A. If it is true
then it would explain why I was unable to find a solution for m = 30 when I was
creating figure 3.3. Indeed, for n = 100 (as it does in figure 3.3), it turns out that

28



Two new models The Terry 2 model

m=10

0.80 0.85 0.90 0.95 1.00
−10

−5

0

5

10

15

20

25

30

y

f(y
)

0 20 40 60 80 100 120
0.00

0.01

0.02

0.03

0.04

0.05

g

P
(g

)

m=20

0.90 0.92 0.94 0.96 0.98 1.00
−15

−10

−5

0

5

10

15

y

f(y
)

0 20 40 60 80 100 120
0.000

0.005

0.010

0.015

0.020

0.025

g

P
(g

)

m=29

0.9990 0.9992 0.9994 0.9996 0.9998 1.0000
−0.2

−0.1

0.0

0.1

0.2

y

f(y
)

0 20 40 60 80 100 120
0.000

0.002

0.004

0.006

0.008

0.010

0.012

g

P
(g

)

Figure 3.3: Terry 2 model: Negative θ solutions (corresponding to solutions for
y = eθ between 0 and 1) and the ‘nice’ distributions they give. Here n = 100. (The
graphs on the horizontal axis are in the order in which they take the observable
values as those values are ordered in equation (3.5) with d = 1.)
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Figure 3.4: Terry 2 model: Demonstration that negative θ solutions may not exist
(they would correspond to solutions for y = eθ between 0 and 1). Here n = 100.

kn = 0.291 to 3 d.p., so that for m > knn ≈ (0.291)(100) = 29.1, solutions are not
guaranteed by theorem 3.1. Graphical evidence that there are no solutions when
n = 100 and m = 30 or m = 50 is given in figure 3.4.

3.4 Average properties

Like the Bernoulli model, the Terry 1 and Terry 2 models may be solved for many
of their average properties. Some of these solutions are trivial because the ensem-
ble is highly restricted but other results are more involved. For example, to find
the expected number of twostars requires a clever trick, as we now demonstrate
for the Terry 1 model. Let t(g) denote the number of twostars of a graph g and
recall that x(g) is the length of the walk on g. Let gi be the graph with a walk of
length i− 1. Then

Eθ[twostars] =
∑
g∈G

t(g)Pθ(g)

=
1
Zθ

{
t(g1)eθx(g1) + t(g2)eθx(g2) + · · ·+ t(gn)eθx(gn)

}
.(3.10)

But for i > 2, the number of twostars in a graph gi with a non-intersecting walk
of length x(gi) = i−1 (and otherwise isolated nodes) is t(gi) = x(gi)−1 = i−2, as
is easily seen either by induction or a few simple pictures. If i = 1 then t(g1) = 0,
since g1 has no edges. Letting y = eθ we may therefore write

Eθ[twostars] =
1
Zθ

{
y2 + 2y3 + 3y4 + · · ·+ (n− 2)yn−1

}
. (3.11)

We can now use the clever trick. (Note in passing that more than one trick is
possible. There is a trick that involves differentiation but we use another option
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here). Denote by Sn the series in y in this last equation (3.11). Multiply it by y to
get ySn and line up the two expressions as follows:

Sn = y2 + 2y3 + 3y4 + · · ·+ (n− 3)yn−2 + (n− 2)yn−1

ySn = y3 + 2y4 + · · ·+ (n− 4)yn−2 + (n− 3)yn−1 + (n− 2)yn.

Now subtract ySn from Sn:

Sn − ySn = y2 + y3 + y4 + · · ·+ yn−1 − (n− 2)yn. (3.12)

The right hand side of this equation contains a geometric progression in y, so we
can simplify it:

Sn(1− y) =
y2(1− yn−2)

1− y
− (n− 2)yn. (3.13)

Using the fact that y = eθ, we may then write

Sn =
e2θ(1− eθ(n−2))

(1− eθ)2
− (n− 2)eθn

1− eθ
, (3.14)

and using the formula for the partition function Zθ for the Terry 1 model (equa-
tion (3.2) with a = 0, d = 1), we finally have (from equation (3.11))

Eθ[twostars] =
(

1
1− eθn

){
e2θ(1− eθ(n−2))

1− eθ
− (n− 2)eθn

}
. (3.15)

The same ideas may be used to find Eθ[twostars] for the Terry 2 model, al-
though the end result is even more complex. Tables 3.1 and 3.2 give details of
various average properties for the Terry 1 and Terry 2 models.

3.5 Generalisations and other patterns

We can extend the generalised Terry 1 model to have r observables where r is
any natural number and each observable takes values in arithmetic progression
(not necessarily the same arithmetic progressions of values for all observables).
Suppose the progressions ‘line up’ over the ensemble, in the sense that for some
graph g1 all observables take their first value in their respective progressions, for
some graph g2 they all take their second value, and so on. Then the model is
again exactly soluble because, in evaluating the partition function, we once again
get a geometric progression.

Similarly we may extend the generalised Terry 2 model and the model re-
mains soluble, though somewhat algebraically cumbersome. We have already
seen (section 3.3) that an observable in the model could be height. Two observ-
ables could be called height and weight, and our producer of the Snow White
pantomime could potentially use the model in a quest for plump dwarfs.

I considered other types of pattern for observables, namely geometric pro-
gressions and sequences of squares. Both of these led to prohibitive algebra and
a headache.
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length of walk Eθ[length of walk] = eθ

1−eθ − neθn

1−eθn

edges Eθ[edges] = Eθ[length of walk], since the number of edges on a
graph is the length of the walk

twostars Eθ[twostars] =
(

1
1−eθn

){
e2θ(1−eθ(n−2))

1−eθ − (n− 2)eθn
}

(equation (3.15)

cycle of length k Eθ[cycle of lengthk] = 0 for any k > 3, since no graph in the
ensemble contains a cycle

clustering Eθ[clustering coefficient] = 0, since two neighbours of a given
node cannot be neighbours of each other for this ensemble

girth Eθ[girth] = 0 since no graph in the ensemble contains a cycle

Table 3.1: Terry 1 model: Average properties

length of walk Eθ[length of walk] = eθ−(m+1)eθ(m+1)−(n−m)eθ(n−m)

eθ+1−eθ(m+1)−eθ(n−m) + eθ

1−eθ

(equation (3.7) with a = 0, d = 1)

edges Eθ[edges] = Eθ[length of walk], since the number of edges on a
graph is the length of the walk

twostars Eθ[twostars] = 1
KZθ

[S1 + S2] where
K = 1

(1−eθ)2

Zθ = eθ+1−eθ(m+1)−eθ(n−m)

1−eθ

S1 =
[
(m− 2)eθ − eθ(m−1)

]
(1− eθ)− e2θ(1− eθ(m−3))

S2 =
[
(m− 1)− (n− 2)eθ(n−m)

]
(1− eθ)− eθ(1− eθ(n−m−1))

other For cycles of length k (any k > 3), clustering, and girth, the average
observables properties are the same as for the Terry 1 model and for the same

reasons (see table 3.1).

Table 3.2: Terry 2 model: Average properties
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3.6 Discussion

Our motivation at the start of this chapter was to find new ways of constructing
exactly soluble ERG models. We achieved this by considering an observable tak-
ing values in arithmetic progression and the resulting model was called the gen-
eralised Terry 1 model. We took a specific case of this and found an observable–
ensemble interpretation to be the length of a walk on the set of all non-isomorphic
undirected graphs on n nodes containing a non–intersecting walk and otherwise
isolated nodes, and we called this the Terry 1 model. In finding these models
we became aware that the ERG machinery may actually be used in more general
contexts than network modelling.

Like the Bernoulli model, we noted that the generalised Terry 1 model always
makes the extreme ‘graphs’ or situations the most likely. We saw this as a limi-
tation and to overcome it we considered a new observable, namely the absolute
difference of terms in an arithmetic progression with an estimated expected value
for these terms. We called this the generalised Terry 2 model. A specific case of
this gave us the Terry 2 model with the same ensemble as in the Terry 1 model.
We discussed applications of the generalised Terry 2 model and conditions under
which the Terry 2 model produces a ‘nice’ distribution, finding that the latter only
appears to happen when the estimated expected value is towards the lower end
of the possible values.

At no stage did we claim to have constructed a new model for networks,
although for networks with a very restricted range of behaviour (containing only
a non-intersecting walk) we have done this. Non-intersecting walks, also called
self-avoiding walks, arise in the study of linear polymer collapse [44], which may
suggest a real-world application of the models. A number of average properties
for the generalised Terry 1 model and generalised Terry 2 model were found,
indicating that there remains some scope for further exploration.

Approximate methods exist for solving ERG models, such as perturbation
techniques for estimating the partition function [72], and there are ad hoc ways
of exactly solving particular examples, but there are no general methods in the
current literature for constructing exactly soluble models. I have introduced such
a method here, namely the restriction of observable values to certain types of pat-
tern. My constructions lead me to believe that a fruitful area of research would
be the consideration of a wide variety of patterns, notwithstanding the somewhat
complex algebra this may entail. At the same time it would be worth contemplat-
ing which kinds of real-world networks could give rise to such patterns in the
observables. The ultimate goal would of course be to find under what conditions
an ERG model is exactly soluble. I have outlined a place to start.
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Chapter 4

The likelihood function

“An undefined problem has an infinite number of solutions.”

Robert A. Humphrey

4.1 Solving the constraints

Earlier (section 1.3) we raised the question of how many solutions may exist for
the constraint equations (1.10), and how to find them if there are any. We settle
the matter in this chapter by recourse to a function known as the likelihood.

I was reminded of the likelihood concept by my supervisor at BT, Keith Briggs.
He stated the definition and told me that the value of its argument that max-
imised it (the “maximum likelihood estimator”) was often used in statistics to
solve the kind of problem I was working on. After experimenting with the func-
tion computationally (next section), I decided that only rigorous proofs would
satisfy me of anything. I was able to establish a strong theorem (theorem 4.2),
which turns out to be valuable in computational solutions of ERGs. The results
and proofs in this section were independently found and constructed by me. It
was only after constructing them that I became aware that they yield a special
case of a general result on likelihood for exponential families. See [58] or [82] for
more details. Other useful references for likelihood include [78] and [28].

We begin, then, with some definitions.

Definition 4.1. Suppose we have an ERG model with r graph observables. Denote them
by x1, x2, . . . , xr. We define the vector of observables for a graph g to be x(g) =
(x1(g), x2(g), . . . , xr(g)).

Definition 4.2. An ERG model with r graph observables will have r parameters. De-
note the parameters by θ1, θ2, . . . , θr. We define the vector of parameters to be θ =
(θ1, θ2, . . . , θr). The parameter space is the set {θ} where each of the components θi of
a particular θ may be any finite real number or ±∞.

34
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Notice that we may now write the Hamiltonian (1.7) for a graph g as

Hθ(g) =
r∑

i=1

θixi(g) = θ · x(g), (4.1)

where the · denotes the dot product.

Definition 4.3. For a random variable Y , dependent on some parameter θ, the likeli-
hood of θ, given a particular subset (y1, y2, . . . , yk) of the sample space, may be defined
as

L(θ) = L(θ|y1, y2, . . . , yk) = Prob[y1, y2, . . . , yk|θ],

where Prob[] denotes the probability operator.

The loglikelihood l(θ) is defined to be simply the natural logarithm of the
likelihood, lnL(θ). (Technically the base of the logarithm is unimportant but we
shall use the natural logarithm for consistency.) If the events y1, y2, . . . , yk are
independent then we may write

L(θ) = Prob(y1|θ)Prob(y2|θ) . . . Prob(yr|θ) (4.2)

and
l(θ) = ln Prob(y1|θ) + ln Prob(y2|θ) + · · ·+ ln Prob(yr|θ). (4.3)

It may be trivially seen that the likelihood is bounded below by 0 and above
by 1, being a probability, and that the loglikelihood is therefore not bounded be-
low and bounded above by 0. It is also trivially seen that the likelihood and log-
likelihood will be globally maximised at the same value(s) of θ, since the natural
logarithm function ln is monotonic increasing if its argument is.

Definition 4.4. We define the maximum likelihood estimator(s) to be the value(s) of
θ that globally maximise the likelihood and loglikelihood.

Henceforth we suppose that the random variable Y is our familiar ensemble
G and that the probability operator Prob[] refers to an ERG distribution P , as
defined in equations (1.6) to (1.8). Moreover we assume that the events y1 to yk

are each observed configurations of a real-world network and, perhaps unreal-
istically, that these observations are independent. (An example will show why
this is unrealistic. Observations of the internet on consecutive days will not be
independent - what the internet does tomorrow very much depends on what it
does today. But observations that are farther apart in time will probably be less
dependent.) We make the assumption of independence for convenience. In many
situations it may be difficult to know how else to begin the fitting of a parametric
model.

Let us denote by g
(1)
obs, g

(2)
obs, . . . , g

(k)
obs the observed configurations of the real-

world network. Then, using the probability formula (1.6), as well as (4.3) and (4.1),
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and recalling the definition of the free energy (section 1.3) as Fθ = ln Zθ, we may
rewrite the loglikelihood l(θ) as follows

l(θ) = ln

{
eθ·x(g

(1)
obs)

Zθ

}
+ · · ·+

{
eθ·x(g

(k)
obs)

Zθ

}
= θ ·

[
x(g(1)

obs) + · · ·+ x(g(k)
obs)
]
− kFθ. (4.4)

Now, from our observed graphs g
(1)
obs, g

(2)
obs, . . . , g

(k)
obs, we may express the esti-

mated expectation value 〈xi〉 for the observable xi as

〈xi〉 =
x(g(1)

obs) + · · ·+ x(g(k)
obs)

k
. (4.5)

Theorem 4.1. For any i from 1 to r,

∂

∂θi
(l(θ)) = k

[
〈xi〉 −

∂

∂θi
(Fθ)

]
.

Proof. Using (4.4) and (4.5) we have

∂

∂θi
(l(θ)) =

∂

∂θi

(
θ ·
[
x(g(1)

obs) + · · ·+ x(g(k)
obs)
])
− k

∂

∂θi
(Fθ)

= xi(g
(1)
obs) + · · ·+ xi(g

(k)
obs)− k

∂

∂θi
(Fθ)

= k〈xi〉 − k
∂

∂θi
(Fθ) = k

[
〈xi〉 −

∂

∂θi
(Fθ)

]
.

Corollary 4.1. The values of θ that make l(θ) stationary are precisely those θ that satisfy
the expectation constraints (1.10).

Proof. This amounts to showing that ∂
∂θi

(l(θ)) = 0 ⇔ 〈xi〉 = ∂
∂θi

(Fθ). But this
trivially follows from theorem 4.1.

Theorem 4.2. For all θ in the parameter space and all i from 1 to r,

∂2

∂θ2
i

(l(θ)) 6 0.

Proof. Theorem 4.1 tells us that ∂
∂θi

(l(θ)) = k
[
〈xi〉 − ∂

∂θi
(Fθ)

]
. Therefore

∂2

∂θ2
i

(l(θ)) = −k
∂2

∂θ2
i

(Fθ).
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Now note that
Fθ = ln Zθ = ln

∑
g∈G

eθ·x(g),

from which we find

∂

∂θi
(Fθ) =

∑
g∈G xi(g)eθ·x(g)∑

g∈G eθ·x(g)
=
∑
g∈G

xi(g)Pθ(g) = Eθ[xi],

and hence

∂2

∂θ2
i

(Fθ) =
∂

∂θi

[
∂

∂θi
(Fθ)

]
=

∂

∂θi

[∑
g∈G xi(g)eθ·x(g)∑

g∈G eθ·x(g)

]

=

(∑
g∈G eθ·x(g)

)(∑
g∈G (xi(g))2 eθ·x(g)

)
−
(∑

g∈G xi(g)eθ·x(g)
)2

(∑
g∈G eθ·x(g)

)2 ,

where we have used the formula for differentiating a quotient. This simplifies:

∂2

∂θ2
i

(Fθ) =

∑
g∈G (xi(g))2 eθ·x(g)∑

g∈G eθ·x(g)
−

(∑
g∈G xi(g)eθ·x(g)∑

g∈G eθ·x(g)

)2

=
∑
g∈G

(xi(g))2 Pθ(g)−

∑
g∈G

xi(g)Pθ(g)

2

= Eθ[xi
2]− (Eθ[xi])

2

=
∑
g∈G

(xi(g)− Eθ[xi])
2 Pθ(g)

= mean of squares− square of mean ∝ variance.

Therefore
∂2

∂θ2
i

(l(θ)) = −k
∑
g∈G

(xi(g)− Eθ[xi])
2 Pθ(g) 6 0

for all θ, since 0 6 Pθ 6 1 for all θ, (xi(g)− Eθ[xi])
2 > 0 for all θ, and k ∈ N.

Corollary 4.2. There always exists a solution to the expectation constraints (1.10) and
all solutions are precisely equal to the maximum likelihood estimator(s).

Proof. By corollary 4.1 this amounts to showing that the loglikelihood is station-
ary in all dimensions θi at the maximum likelihood estimator(s) and nowhere
else. (By a dimension θi we mean the dimension corresponding to the parameter
θi. We mention this since it may be considered a minor abuse of notation.)
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The loglikelihood is defined over all θi for −∞ 6 θi 6 ∞ and is everywhere
differentiable. As noted in the comment just before definition 4.4, the loglike-
lihood is bounded above. But in a dimension θi a function that is defined ev-
erywhere, is everywhere differentiable, and is bounded above must have zero
partial derivative (with respect to θi) where it is biggest (which may be at ±∞).
If it didn’t, then to at least one side of where it was biggest, it would be bigger!

Then, where the loglikelihood l(θ) is biggest in any dimension θi, it must be
stationary. In other words, at the maximum likelihood estimator(s) the loglikeli-
hood is stationary. It remains for us to show that the loglikelihood is not station-
ary anywhere else.

We show that in a dimension θi all stationary points must be at the same
height (the same l(θ) value), namely the height at the maximum likelihood esti-
mator(s). So, suppose there is a stationary point in a dimension θi which is at a
maximum likelihood estimator (the existence of such a point is guaranteed by the
previous paragraph). Suppose further that there exists another stationary point.
The two stationary points may either be at the same height (the same l(θ) value),
in which case there is nothing to prove, or one is higher than the other (different
l(θ) values). If one is higher than the other, then the curve, in going from the
higher point to the lower, must change somewhere from being concave down to
concave up, since it passes from one point with zero derivative to another. But the
latter (concave up) is not allowed since it would imply ∂2

∂θi
2 (l(θ)) > 0 somewhere

between the two points, which would contradict theorem 4.2.

Hence any stationary point in any dimension must be at a maximum likeli-
hood estimator for that dimension. This completes the proof.

Corollary 4.3. If a graph observable xi is constant there are infinitely many solutions to
the expectation constraints (1.10) for the parameter θi.

Proof. Let the graph observable xi be constant. Then xi(g) − Eθ[xi] = 0 for any
graph g and all θ. It follows from theorem 4.2 that ∂2

∂θ2
i
(l(θ)) = 0 for all values

of θi. In other words, l(θ) is flat in dimension θi. But then all values of θi, from
−∞ to ∞, are maximum likelihood estimators in this dimension. By this and
corollary 4.2 the result follows.

Corollary 4.4. If a graph observable xi is not constant and Pθ(g) 6= 0 for any θ, then
there is a unique solution for θi in the expectation constraints (1.10).

Proof. Let the graph observable xi be non-constant. Then for any θ there is a
graph g such that xi(g)− Eθ[xi] 6= 0. Because of this, and since Pθ(g) 6= 0 for any
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θ, theorem 4.2 tells us that ∂2

∂θ2
i
(l(θ)) < 0 for all values of θi. But the loglikelihood

is a function defined everywhere and which is everywhere differentiable (in any
dimension θj , including θi), so if it has a second derivative that is everywhere
negative in a dimension θi it must have a unique maximum, that is, l(θ) has a
unique maximum likelihood estimator in dimension θi. By this and corollary 4.2
the result follows.

4.2 Graphical examples of likelihood

With the ensemble of figure 2.1 and taking as an observable the number of edges,
I plotted the loglikelihood for each graph in the ensemble (figure 4.1, top). Notice
that the maximum likelihood estimator (MLE) is unique in all cases. The observ-
able is non-constant over the ensemble yet for θ = −∞ only the null graph has
a non-zero probability, which suggests that the condition on the probabilities in
corollary 4.4 may sometimes be relaxed. For θ = +∞ only the complete graph
has a non-zero probability.

Using the same ensemble but now choosing two observables - edges and
twostars - I plotted the likelihoods of the graphs (figure 4.1, bottom). (When I
plotted the loglikelihoods the pictures were much ’flatter’ and harder to inter-
pret.) The curious amoeba objects of figure 4.1 (bottom) are stretched in the verti-
cal direction, suggesting greater dependence on the parameter that represents the
horizontal axis, which is the twostar parameter. An appropriate re-scaling of the
axes would yield more rounded amoebae (for most of the graphs) and give more
accurate estimations of the MLE, but even these pictures are sound evidence that
the MLE is unique in most and perhaps all of the graphs in the ensemble.

Finally, with the ensemble of figure 4.2 and taking as observables the number
of nodes of degree 1 and the number of nodes of degree 2, I once again plotted
likelihoods to obtain figure 4.3. The amoeba objects now are nicely rounded and
suggest, along with brief reflection of extreme cases such as the null graph and
the complete graph, that the likelihood is well behaved and gives a unique MLE
for each graph. In fact notice that the null graph, the complete graph, and a
few others, give exactly the same likelihood plots, with the amoeba going off
the top left corner. These graphs all have no nodes of degree 1 or 2, so that,
from the probability formula (1.6), we can say they become most likely when the
parameters coupled to the observables are both −∞, at which ‘point’ they are all
equally likely with probability 1

5 . It seems we may observe then that the MLE can
be unique for each graph where different graphs can have the same MLE.
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Figure 4.1: Top: Plots of loglikelihood. Observable – edges. Ensemble – the
graphs in figure 2.1. Each picture here shows the loglikelihood plotted against its
argument, θ. The graph used to make each picture is the graph in the correspond-
ing position in figure 2.1. Bottom: Plots of likelihood. Observables – edges and
twostars. Ensemble – the graphs in figure 2.1. Each picture here shows the like-
lihood plotted against its arguments, θ (the edge parameter) and α (the twostar
parameter). Vertical axis is θ. Horizontal axis is from -5.0 to 5.0 left to right, ver-
tical from -5.0 to 5.0 top to bottom. The graph used to make each picture is the
graph in the corresponding position in figure 2.1. Red areas show the highest
values; blue the lowest.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34

Figure 4.2: All non-isomorphic undirected graphs on 5 nodes (isolated nodes not
shown, hence null graph produces an empty box).
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The likelihood function Graphical examples of likelihood

Figure 4.3: Plots of likelihood. Observables – nodes of degree 1 and nodes of
degree 2. Ensemble – the graphs in figure 4.2. Each picture here shows the likeli-
hood plotted against its arguments, θ (the degree 1 parameter) and α (the degree
2 parameter). Vertical axis is θ. Horizontal axis goes from -3.0 to 3.0 left to right,
vertical from -3.0 to 3.0 top to bottom. The graph used to make each picture is
the graph in the corresponding position in figure 4.2. Red areas show the highest
values; blue the lowest.
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Chapter 5

Markov Chain Monte Carlo
simulations

“Pause you who read this, and think for a moment of the
long chain of iron or gold, of thorns or flowers, that
would never have bound you, but for the formation of
the first link on one memorable day.”

Charles Dickens

5.1 Introduction

Most ERG models do not have known exact solutions. Of course, to use an ERG
model, it is always possible to work directly from its defining equations ( (1.6)
to (1.9)), but often this is not practical. If, for example, the ensemble is all undi-
rected graphs on n nodes, then the number of terms that we need to sum to find
the partition function (1.8) is 2(n

2). If n is only 30, this sum will involve more than
10130 terms!

An alternative is required, and thankfully one exists. It is called the Markov
Chain Monte Carlo (MCMC) simulation and will be the subject of the rest of this
work.

5.2 The MCMC simulation

A formal description of Markov Chains would be complicated and is anyway un-
necessary to give an understanding of MCMC simulations. Informally we may
think of a (discrete) Markov Chain as being some sort of process where the out-
come of the process Xt+1 at a time t + 1 depends only on the outcome of the pro-
cess Xt at the previous time t. Under certain conditions the chain will converge
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to an equilibrium, in the sense that the probabilities of the possible outcomes
converge to a distribution known as the equilibrium distribution π. A careful
treatment of Markov Chains may be found in [73].

Similarly we need but an intuitive approach to Monte Carlo simulations. A
Monte Carlo simulation is simply an algorithm that uses randomly generated
numbers. (Technically they are almost always pseudo-random numbers but we
won’t go into that here.) More details may be found in [9].

Informally, then, we may say:

Definition 5.1. A Markov Chain Monte Carlo (MCMC) simulation is a process in
which the outcome Xt+1 at time t + 1 depends only on the outcome Xt at time t and the
comparison of a quantity dependent on Xt with a randomly generated number.

5.3 Some background

We have seen the importance of the maximum likelihood estimator(s) (MLE) in
the previous chapter. Aware of this importance, not merely to ERG models but to
a host of other statistical problems, Geyer and Thompson [40] (1992) constructed
Monte Carlo-based algorithms for approximating the MLE. In 1993 Dahmström
and Dahmström [21] proposed an MCMC simulation for the estimation of a sin-
gle parameter of a particular kind of ERG model, the Markov graph. (It would
take too long to adequately describe Markov graphs here, so I shall just refer the
reader to [35].) Then, in 1998, Corander, Dahmström, and Dahmström [20] ex-
tended this MCMC simulation to the estimation of a multi-dimensional parame-
ter, using ideas from Geyer and Thompson’s 1992 paper.

More recently Snijders [82] (2002) has drawn attention to convergence prob-
lems in MCMC simulations for ERG models. Handcock [45] (2003) and Snijders
et al [83] (2004) have subsequently wrestled with the question of what makes a
‘good model’, but the question remains far from settled. We will speak of conver-
gence problems again in subsection 5.4.5.

5.4 Theory

Recall that before we can use an ERG model we must initialise it by solving the
expectation constraints (1.10) and by finding the partition function (1.8). In chap-
ter 4 we saw that the MLE always yields the solutions to the expectation con-
straints. If we can therefore somehow approximate the loglikelihood function
l(θ), it should be straightforward to roughly calculate the MLE. We shall describe
how MCMC simulations may be used to make such an approximation, and may
further be used to approximate the partition function.
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5.4.1 Approximating the loglikelihood

We need a number of observations and results before we can arrive at our ap-
proximation for the loglikelihood l(θ). The ideas used in this and the next two
subsections are adapted from [50].

To begin, then, suppose we have a real-world network, an appropriate en-
semble G, and appropriate vector of observables x. Further, let θ be any vector
of parameters in the parameter space, and let θ0 be some fixed vector of param-
eters in this space. (Theoretically θ0 can be any such vector, but we will see later
(subsection 5.4.5) that for computational purposes it may be sensible to choose θ0

close to the MLE, assuming we know how to do this.) Finally, let Pθ be the ERG
model subject to these assumptions and let g denote any graph in G. We may
write

Eθ0

[
e(θ−θ0)·x(g)

]
=

∑
g∈G

e(θ−θ0)·x(g)Pθ0(g) =
∑
g∈G

e(θ−θ0)·x(g) e
θ0·x(g)

Zθ0

=
1

Zθ0

∑
g∈G

eθ·x(g) =
Zθ

Zθ0

, (5.1)

where, on the last step, we have used equation (1.8).

Thus Zθ
Zθ0

is an expectation with respect to θ0. But we can use the law of large
numbers to estimate an expectation by a sample mean. Let g1, g2, . . . , gm be a
random sample of graphs picked from the distribution Pθ0 defined by the ERG
model with parameter θ0. (Naturally a graph is more likely to be picked from this
model if it has a higher probability in the model.) Then we may estimate

Zθ

Zθ0

= Eθ0

[
e(θ−θ0)·x(g)

]
by the sample mean

1
m

m∑
i=1

e(θ−θ0)·x(gi). (5.2)

Assume for the moment that we have such a sample of graphs g1, g2, . . . , gm.
(We discuss how to get this in subsection 5.4.2.) Suppose in addition that we have
an observation gobs of our real-world network. Then, using the definition of the
likelihood function Lθ (definition 4.3), we can express the loglikelihood l(θ) as

l(θ) = lnL(θ) = ln Prob[gobs|θ] = lnPθ(gobs) = ln

{
eθ·x(gobs)

Zθ

}
. (5.3)

where Prob[] denotes the probability operator. We can express l(θ0) similarly. It
now follows that

l(θ)− l(θ0) = ln

{
eθ·x(gobs)

Zθ

}
− ln

{
eθ0·x(gobs)

Zθ0

}

= − ln
{

e(θ0−θ)·x(gobs)
Zθ

Zθ0

}
. (5.4)
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But Zθ
Zθ0

may be approximated by 1
m

∑m
i=1 e(θ−θ0)·x(gi) (equation (5.2)). Hence

l(θ)− l(θ0) ≈ − ln

{
e(θ0−θ)·x(gobs)

1
m

m∑
i=1

e(θ−θ0)·x(gi)

}

= − ln

{
1
m

m∑
i=1

e(θ−θ0)·[−x(gobs)]e(θ−θ0)·x(gi)

}

= − ln

{
1
m

m∑
i=1

e(θ−θ0)·[x(gi)−x(gobs)]

}
. (5.5)

If we now maximise (5.5) as a function of θ, we will (approximately) maximise
l(θ) − l(θ0). However, since θ0 is fixed, l(θ0) is fixed, and we therefore (approxi-
mately) maximise l(θ). But the θ value that does this is, of course, our MLE! So
we have found what we want!

Two questions arise. First, how easy is it in practice to calculate (5.5)? Second,
what if there is more than one observed graph? We deal with the first question in
subsection 5.4.3 and answer the second here.

Suppose the observed graphs are g
(1)
obs, g

(2)
obs, . . . , g

(k)
obs. The loglikelihood is, by

definition (see definition 4.3 and subsequent discussion),

l(θ) = ln Prob
[
g
(1)
obs, . . . , g

(k)
obs|θ

]
,

where Prob[] denotes the probability operator. If we assume all observed graphs
are independent, and that the operator Prob[] refers to our ERG distribution P ,
then

l(θ) = ln
{

Prob[g(1)
obs|θ] . . . Prob[g(k)

obs|θ]
}

= ln
{

Pθ(g
(1)
obs) . . . Pθ(g

(k)
obs)
}

= lnPθ(g
(1)
obs) + · · ·+ lnPθ(g

(k)
obs). (5.6)

But lnPθ(g
(1)
obs) is the loglikelihood for the observed graph g

(1)
obs. So, in fact (5.6) is

a sum of loglikelihoods, each of which may be estimated up to an additive con-
stant and for a given θ by (5.5). Then, to find the MLE, we simply find the θ that
maximises this sum of loglikelihoods. As noted after definition 4.4 it may be un-
reasonable to suppose the observed graphs are independent, but it can be difficult
to do the maths without this assumption. The issue of multiple observed graphs
for MCMC methods is worth exploring as I have not seen it appear anywhere in
the literature.

5.4.2 Using a simulation to get a sample

How, then, do we find a random sample of graphs g1, g2, . . . , gm from the distri-
bution defined by the ERG model with parameter θ0? Simple! We run an MCMC
simulation! We begin with our observed graph gobs (although theoretically we
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could begin with any graph in the ensemble) and, on each step of the simulation,
change (or not) the graph that we currently have, according to some straight-
forward rule (examples of which will be given very shortly), where the rule is
dependent on θ0, and the chain will converge in theory to the desired distribu-
tion.

One such rule is known as the Gibbs Sampler, which we describe here for undi-
rected graphs (the directed case is very similar). On each step of the simulation
we randomly pick from the current graph g a pair of nodes (i, j) where i 6= j. If
there is an edge (i, j) in g (or (j, i), which is the same thing since g is undirected),
we let g+

ij be the graph g and g−ij be the graph g missing the edge (i, j). Otherwise
we let g+

ij be the graph g plus the edge (i, j) and let g−ij be the graph g. We form
the new graph gnew by first letting it be the same as g, and then, whether or not it
already has the edge (i, j), we allow there to be the edge (i, j) with probability

eθ0·(x(g+
ij)−x(g−ij))

1 + eθ0·(x(g+
ij)−x(g−ij))

. (5.7)

In other words, if this quantity is bigger than a randomly chosen number between
0 and 1, we allow the edge (i, j) (and therefore (j, i) as well since the graph is
undirected) in gnew and otherwise do not.

The observant reader may wonder if changing a graph in this way may lead
to a graph outside the ensemble and consequently to an inaccurate chain. There
is no theoretical problem if the ensemble is all directed or undirected graphs on a
fixed number of nodes n (see [82]), but the Terry 1 and Terry 2 models (chapter 3)
may produce strange results. There has not been the time to investigate and in
any case those latter two models are exactly soluble.

Obviously the graph gnew may not actually be different to g. In any case we
always use gnew at the start of the next step as our current graph. If we run a
chain of, say, 30 million steps, we could take the last 105 graphs as a sample.

There are many alternatives to the Gibbs Sampler. A small list of updating
steps is given in table 5.1.

5.4.3 Efficient storage

Crucially the only data we need to store as we run the simulation is the running
total of the changes in the vector of graph observables. To help explain this, re-
member that the chain starts at gobs and imagine that at the end of step t the graph
becomes g

(t)
chain. Then on the first step the change in the vector of observables is

x(g(1)
chain)− x(gobs). On the second step the change is x(g(2)

chain)− x(g(1)
chain), and the

running total of the changes is[
x(g(2)

chain)− x(g(1)
chain)

]
+
[
x(g(1)

chain)− x(gobs)
]

= x(g(2)
chain)− x(gobs).
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Markov Chain Monte Carlo simulations Theory

Likewise, after three steps, the running total is x(g(3)
chain) − x(gobs). It is now

easy to see that after t steps the running total will be x(g(t)
chain)−x(gobs). But in (5.5),

the only information we need from our sample of graphs is x(gi)−x(gobs) for each
graph gi in the sample. So just by keeping a running total of the changes in the
vector of observables, we will be placing ourselves in a position to calculate (5.5).

Keeping such a running total is very efficient computationally. This is because,
to find the change in the vector of observables, x(g(t)

chain)−x(g(t−1)
chain ), on a particular

step t, may not (depending on the choice of observables) require us to calculate
the individual vectors of observables, x(g(t)

chain) or x(g(t−1)
chain ). Moreover, on any step,

we only need to store the current graph.

An example will make this clear. Let the vector of observables consist of only
one observable, namely the total number of edges. Also, let the randomly chosen
pair of nodes on step t be (i, j). And suppose we use the Gibbs Sampler. We may
easily determine in a computer program if (i, j) is an edge in g

(t−1)
chain by asking for

the value of the element in row i and column j of its adjacency matrix. Suppose
there is not an edge (i, j) in g

(t−1)
chain . Then if on step t it is decided that we do not

allow there to be an edge (i, j) in g
(t)
chain, the change in the total number of edges

is clearly zero, and if it is decided that we do allow there to be an edge (i, j) in
g
(t)
chain, the change is clearly +1. We may reason in a similar way if g

(t−1)
chain does have

an edge (i, j). Once we know if we are to have the edge or not, we can change
g
(t−1)
chain into g

(t)
chain quite trivially. Writing a program to keep track of the correct

change and the current graph on each step, and the running total of the changes,
is therefore not complicated (see the second program in appendix B).

5.4.4 The partition function

We now have a method for estimating the vector of parameters that satisfies equa-
tion (1.10) but to be able to properly use our ERG model we still need an estimate
for the partition function Zθ. Fortunately such an estimate may be found using
ideas with which we are already familiar. Indeed recall by equation (5.2) that we
may write

Zθ

Zθ0

≈ 1
m

m∑
i=1

e(θ−θ0)·x(gi) (5.8)

where g1, g2, . . . , gm is a random sample of graphs drawn from the distribution
defined by the ERG model with parameter θ0. If we set θ0 = 0 we can use equa-
tion (1.8) to find that

Zθ = Zθ=0 =
∑
g∈G

e0 =
∑
g∈G

1 = number of graphs in ensemble.
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If the ensemble is all undirected graphs on n nodes, say, we get Zθ=0 = 2(n
2). Then

we can rearrange (5.8) to obtain

Zθ0 ≈
(

n

2

){
1
m

m∑
i=1

e−θ0·x(gi)

}−1

(5.9)

which may be written

Zθ0 ≈
(

n

2

)
e−θ0·x(gobs)

{
1
m

m∑
i=1

e−θ0·[x(gi)−x(gobs)]

}−1

(5.10)

where gobs is an observed graph. We have already discussed (section 5.4.3) how
it is possible to efficiently compute quantities such as the expression enclosed
in parentheses in this last equation (5.10). Calculating the other factors in (5.10)
presents no significant challenge. For large n it is straightforward to approximate
2(n

2) and for a reasonably small number of observables, and as long as gobs is not a
really gigantic graph, there should be no problems in computing x(gobs). Thus if
we set θ0 to be our MLE, found by the method outlined in the last few subsections,
then equation (5.10) becomes an approximation for the partition function for the
model we want to use.

I have not seen anyone else derive (5.10). Nor have I had time to experiment
with it, so I recommend it as an area to be investigated.

5.4.5 Convergence

If it is possible to go from any graph to any other graph in a finite number of
steps (i.e., assuming all graphs ‘communicate’), then the only requirement for
convergence of an MCMC simulation is the satisfaction of the detailed balance equa-
tion [73]. Let us denote by Pt(ga, gb) the probability, or transition probability, of
going from a graph ga to a graph gb on a time step t of the simulation. Then if
there exists a distribution π over the ensemble such that, for all ga and gb in the
ensemble,

π(ga)Pt(ga, gb) = π(gb)Pt(gb, ga) (5.11)

then P and π are said to be in detailed balance and π is a stationary distribution
of the Markov Chain with transition probabilities Pt(ga, gb). It may be shown
fairly easily [82] that the updating steps in table 5.1 satisfy the detailed balance
equation, so these steps are the transition probabilities of a convergent chain (as-
suming all graphs ‘communicate’).

Of course knowing only that a chain is convergent tells us nothing about how
quickly it converges. In practice MCMC simulations may take a hideously long
time to converge. As an example, suppose the ensemble is all directed graphs on
n nodes and that the observables are the total number of edges, the reciprocity,
and the number of out-twostars (defined in table 1.3). Snijders [82] has found
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that for certain ranges of the vector of parameters the equilibrium distribution is
bimodal, in the sense that most of the probability mass is distributed over two
clearly separated subsets of the ensemble, one containing low-density graphs
(few edges) and the other high-density graphs (many edges). The separation
between these two subsets can be so extreme that steps using the Gibbs Sampler,
or other updating steps that change only a small number of edges, have a negligi-
ble probability of taking the chain from one subset to the other. For such models
simulation results are, practically speaking, determined by the initial graph, and
they give completely misleading information about expectation values for the
ensemble.

According to Hunter [50], if the vector of parameters θ0 for which we run a
simulation is not close to MLE then convergence may be “agonisingly slow”. But
Snijders [82] points out that in many cases of interest the MLE is in a range that
gives the kind of hopeless situation mentioned in the last paragraph. Hunter also
claims that a choice of θ0 that “often works” is the maximum pseudolikelihood
(MPLE) (see [50] for a description of it). But he admits that little is known of
its theoretical value. Snijders suggests that the MPLE no longer be used until
substantial theory can justify its choice. As far as I can see, any θ0 that gives a
quick convergence is worth considering, if we can find it.

To find a good choice for θ0, then, my approach has been as follows. Always
beginning my chains with the observed graph gobs, I print out, for a range of θ0,
the running totals of the changes in the vector of observables for a small sample
of graphs, after, say, chains of 10, 20, and 30 million steps. When I find a θ0 that
leads to small values in the running totals, I assume that this is a good choice
because few changes appear to be needed to go from the observed graph to the
graphs that occur many millions of steps later. Then I investigate values close
to θ0. Eventually, if I have a θ0 that consistently gives very small values in the
running totals of the changes in the vector of observables, I turn my attention to
estimating the MLE and may make further adjustments to θ0 depending on what
happens there. Snijders has written some programs that automatically adjust θ0

whilst estimating the MLE [82] but by his own admission they give mixed results.

5.5 A real-world application

We consider a data set that has been well studied in the literature, the Samp-
son monastery data. A PhD student, Sampson spent some time in a monastery
observing the interactions of 18 monks. He gathered friendship data and anal-
ysed it [79], and various authors have subsequently manipulated and dissected
it [46, 33, 35, 82]. We shall look at the symmetrised version used by Frank and
Strauss [35]. The original data was converted into a symmetric adjacency matrix
with an edge between two nodes (or monks, which the nodes represent) indicat-
ing, essentially, that at least one of the monks considers the other to be a friend
(see table 5.2). We have here, then, an undirected social network and we take as
our ensemble all undirected graphs on 18 nodes.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0 1 1 1 1
2 0 1 1 1 1 1 1 1 1
3 0 1 1 1 1 1 1
4 0 1 1 1 1
5 0 1 1
6 0 1 1 1 1
7 0 1 1
8 0 1 1 1 1 1 1
9 0 1 1 1 1 1 1 1
10 0 1 1 1 1 1 1
11 0 1 1
12 0 1 1
13 0 1 1
14 0
15 0 1 1 1
16 0 1 1
17 0 1
18 0

Table 5.2: The symmetrised version of the adjacency matrix of Sampson’s 1969
data used in [82, 35]. In the upper triangle blank spaces correspond to zeroes.

I began my exploration of the data by choosing to have one observable, the
number of edges. I wrote a C program (see appendix B) to carry out an MCMC
simulation by Metropolis-Hastings updating steps, with the possibility of inver-
sion on every hundredth step. Very rapid convergence was seen for various θ0.
In fact the graphs in the chain appeared to settle into equilibrium immediately,
with the number of edges fluctuating about their expected value (see figure 5.1,
top left and right). (The expected value is known exactly here since we have the
ensemble-observable combination of the Bernoulli model on 18 nodes.) Choosing
θ0 = 0.0, I then used equation (5.5) to plot an approximation of l(θ)− l(θ0) against
θ. Thus I was able to find the MLE to be θ ≈ −0.4 (figure 5.1, bottom right).

Frank and Strauss [35] and more recently Snijders [82] took as their observ-
ables the number of edges, twostars, and triangles (cycles of length three). Frank
and Strauss maximised the pseudolikelihood as a rough guess at the MLE and
Snijders did the same in order to compare the result to an estimate for the MLE
that he calculated by MCMC simulations. Snijders drew attention to the fact that
they were completely different! He also mentioned that his simulations had only
60 thousand steps in them, gave evidence that the parameters were highly cor-
related, and said that quite different estimates for the MLE may be found. The
results of Frank and Strauss, and of Snijders, are given in table 5.3.

I added a function to my C program to deal with these three observables -
edges, twostars, triangles - and proceeded to estimate a good θ0 for an MCMC
simulation, with Metropolis-Hastings updating steps, in the way that I outlined
at the end of subsection 5.4.5. Denote by (θ1, θ2, θ3) the parameters for (edges,
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Figure 5.1: Observable: edges. Top left and right: The edges of the current graph
in an MCMC simulation (with θ0 = 0.0) are plotted against the simulation (time)
step. This model is exactly soluble and the expected average for this θ0 is 76.5.
Notice that there is no significant transient. Bottom left: The number of edges
of the graphs in the last 105 steps of a ten million step simulation (again with
θ0 = 0.0) are plotted against their frequencies. Bottom right: The approximation
to l(θ)−l(θ0) of equation (5.5) is plotted against the edge parameter θ. The sample
of graphs used to do this was the last 105 of a 30 million step simulation with
θ0 = 0.0.
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Observable MCMCMLE (this
work)

MCMCMLE (Sni-
jders [82])

pseudolikelihood
(Snijders [82])

pseudolikelihood
(Frank and
Strauss [35])

Edges 3.5 -0.77476 -0.0810 -0.10
Twostars -0.6 -0.04875 -0.2285 -0.23
Triangles 1.1 0.34520 0.9754 0.97

Table 5.3: MLE parameter estimation for: symmetrised Sampson data (table 5.2).

twostars, triangles). I discovered that for θ0 = (4.6,−0.8, 1.5), the chain seemed
to always give relatively small values in the running totals of the changes in the
vector of observables after 10, 20, and 30 million steps. The running totals in the
changes of edges, for instance, usually had magnitude less than 15. I decided to
consider the cubic grid of points satisfying −2.0 6 θ1 6 6.0, −2.0 6 θ2 6 1.0,
−1.0 6 θ3 6 2.9, with the distances between values of θ1 being 0.5, between θ2

being 0.2, and between θ3 being 0.3. Then, for θ0 = (4.6,−0.8, 1.5) I ran a simula-
tion of 30 million steps, took the next 105 graphs as a sample, and calculated the
approximation of l(θ) − l(θ0) of equation (5.5) at each of the points of the cubic
grid. I estimated the MLE as the point θ on the cubic grid at which the approx-
imation of l(θ) − l(θ0) was biggest. (This brute force approach was adopted for
two reasons: first, due to random noise effects there may be local maxima of the
approximation of l(θ) − l(θ0) that are nowhere near the true MLE, so that search
direction methods could be hampered or complicated; second, I didn’t have time
to do anything else.)

On the first simulation I got an MLE of (4.5,−0.6, 0.8). Repeated simulations
gave a fairly varied series of MLEs but one in particular kept cropping up, namely
(3.5,−0.6, 1.1). So I took this as my θ0 and found that it gave, after 10, 20, and
30 million steps, even smaller values in the running totals of the changes in the
vector of observables than for the previous θ0. The running totals in the changes
of edges typically had magnitude less than 10, intuitively indicating good con-
vergence. For θ0 = (3.5,−0.6, 1.1) I now carried out my brute force cubic grid
MLE search and a varied sequence of MLEs once more resulted. But whenever
I tried these MLEs as my θ0, then, unless they were close to (3.5,−0.6, 1.1), they
gave large running totals of changes, which made the evaluation of the approx-
imation to l(θ) − l(θ0) of equation (5.5) essentially impossible. A sum of many
thousands of exponentials to powers of more than a thousand is not evaluated
as a finite number in C. On the other hand, for θ0 = (3.5,−0.6, 1.1), I found the
approximation to l(θ) − l(θ0) to range from about −220 to 0 or 1 over my entire
cubic grid. The MLE was not always close to θ0 but at θ = θ0 the value of the
approximation to l(θ) − l(θ0) was always very close to the biggest value it took
over the grid. (In fact I reassuringly found that the approximation to l(θ) − l(θ0)
was 0.0 at θ = θ0.) Thus this θ0 appears to give good convergence and produces
a fairly ’flat’ loglikelihood function around θ0 (flat in the sense of a small range
of values for the estimate of l(θ)− l(θ0)). Yet the loglikelihood will generally only
be flat in the vicinity of its MLE (see, for instance, figure 5.1, bottom right).
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Figure 5.2: Observables: edges (parameter θ1), twostars (θ2), triangles (θ3). A
simulation of 30 million steps is run with θ0 = (3.5,−0.6, 1.1). Last 100000 graphs
taken as a sample. Plots here are projections of the approximation to l(θ) − l(θ0)
of equation (5.5). Left: θ1 = 3.5, −2.0 6 θ2 6 1.0, −1.0 6 θ3 6 2.9, θ2 vertical
axis, increasing top to bottom, θ3 horizontal, increasing left to right. Middle:
θ2 = −0.6, −2.0 6 θ1 6 6.0, −1.0 6 θ3 6 2.9, θ1 vertical. Right: θ3 = 1.1,
−2.0 6 θ1 6 6.0, −2.0 6 θ2 6 1.0, θ1 vertical. Red areas show biggest values of
approximation of l(θ)− l(θ0), blue smallest.

All of this mounting circumstantial evidence has given me cause to consider
(3.5,−0.6, 1.1) to be a fair candidate for the MLE. I include it in table 5.3. For a
graphical appreciation of the situation, I made three plots on the cubic grid, each
holding one of either θ1, θ2, or θ3 constant (see figure 5.2). It is difficult to deduce
uniqueness of the MLE from the plots alone. I have experimented with grids of
various different sizes (but still holding one of the parameters fixed at the values
just stated), but seem to repeatedly get pictures like those in figure 5.2. If these
pictures are to give the kind of amoebae we saw in figure 4.3, the amoebae would
have to be extremely large.

Notice that my MLE estimate is wildly different from that of Snijders (ta-
ble 5.3). I have to question how Snijders felt the confidence to state his results
to five decimal places after simulations of only 60 thousand steps when the en-
semble has 2(18

2 ) > 1045 graphs and when he freely admits that quite different
estimates for the MLE may be found. In any case I have given pause for thought
on this well studied data set.
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Concluding remarks

We began with the intention of laying down a broad framework for the mod-
elling of all real-world networks. A brief review of network modelling to date
revealed that only one suitably general candidate had so far emerged, the expo-
nential random graph (ERG) model. We described the model, defining the ensemble
to be the set of graphs that our real-world network could reasonably be expected
to become. Just how reasonable it was that our network could become a partic-
ular graph in the ensemble was estimated by maximising Gibbs’ entropy subject
to constraints involving measurements of several properties or observables of the
network. This gave us a probability distribution over the ensemble.

The rest of the project was devoted to assessing how appropriate the model
was as a practical tool. For some straightforward examples it was discovered that
the equations governing the model could be simplified drastically and we called
such models soluble. One such example was the well-known Bernoulli model
with the ensemble of all undirected graphs on a fixed number of nodes and a sin-
gle observable, namely the total number of edges. An attempt was made, with
some success, to introduce a method by which further soluble models may be
found. The method was to restrict the values of the observables to well-behaved
patterns, and with the pattern being an arithmetic progression, or a related se-
quence, two new models - Terry 1 and Terry 2 - were born. Despite their solubility
it became clear that some complicated maths lay beneath the surface.

We then sought general conditions under which the governing equations of
the ERG model had solutions. This was not the same as finding soluble models,
for of course the existence of solutions is not the same as the possession of them.
We found, by recourse to the likelihood function, that a solution always exists to
the ERG model and is provided through the maximising of this function, or its
logarithm.

Finally we discussed Markov Chain Monte Carlo simulations as a tool for max-
imising the loglikelihood in models not known to be soluble. Despite a firm
theoretical basis for this approach and the knowledge that in some ways it is
computationally efficient, it was observed that in certain cases the simulations
give poor or unreliable results. We considered one particular example, the Samp-
son monastery data. We found that with a single observable, the total number
of edges, the simulations converged very rapidly and yielded a well-behaved ap-
proximation to the loglikelihood. But for three observables - the number of edges,
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twostars, and triangles - it was difficult to draw any exact conclusions, even after
30 million steps.

Various suggestions for future research were made throughout the work. The
restriction of observable values to predictable patterns should be explored as
a means of constructing soluble models. Precise conditions on the observables
alone that guarantee a unique solution to the governing equations of the model
could be investigated. Above all the applicability of Markov Chain Monte Carlo
simulations needs to be understood. Very recent research into soluble mod-
els has been conducted by Newman and Park [72] and the appropriateness of
Monte Carlo simulations is being actively pursued by Snijders, Handcock, and
others [83].

As a general device for network analysis the ERG model is in principle sensi-
ble but in practice often limited. Even extensive computation may yield little of
value. Until more research has been carried out into the practical aspects of the
model, it will not be possible to give it a ringing endorsement.



Appendix A

Proof of theorem 3.1

Theorem 3. 1. The number of solutions to the expectation constraint of the Terry 2 model for
θ < 0 depends on the value of m. In fact:

A If m = 0 then θ = −∞ is a solution

B If 1 6 m < n − 1 and n > 5 there exists a real number kn ∈
(

1
n , n−1

n

)
, dependent on

n, such that for all m < knn there is at least one finite solution θ < 0 to the expectation
constraint. For large n, kn ≈ 2−

√
2

2 = 0.293 to 3 d.p.

C If m = n− 1 then there are no solutions for θ < 0

As we saw in chapter 3, the expectation constraint of the Terry 2 model may be writ-
ten as

f(y) =
y − (m + 1)ym+1 − (n−m)yn−m

y + 1− ym+1 − yn−m
+

y

1− y
−m = 0 (A.1)

where y = eθ, m ∈ N ∪ {0}, n ∈ N, and 0 6 m 6 n − 1. A finite solution for θ < 0
is equivalent to a solution for y ∈ (0, 1) and the solution θ = −∞ is equivalent to the
solution y = 0.

Proof of part A. Notice that when m = 0, f(0) = 0, so the first part of the theorem is
trivially true.

Proof of part B. Assume 1 6 m < n− 1 and n > 5. We shall show

1. f(0) < 0

2. f(1) > 0 if m
n < kn = 1− 1

2n −
1
2n

√
2n2 − 2n + 1

3. kn ∈
(

1
n , 1
)

4. f(y) is continuous on [0, 1]

5. kn ≈ 2−
√

2
2 for large n
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Proof of theorem 3.1

By the intermediate-value theorem (see [7]) results 1, 2, and 4 will guarantee, for m

in the range 1 6 m < knn, the existence of a y∗ ∈ (0, 1) such that f(y∗) = 0. Hence a
finite solution for θ < 0. Result 3 will guarantee that it makes sense to speak of the range
1 6 m < knn, since it will ensure knn > 1 and knn < n − 1. In other words, this range
will be non-empty (it will include m = 1) and will not include any m outside the range
we are considering (1 6 m < n− 1). Result 5 will establish the final detail of part B of the
theorem.

Proof of result 1

We have f(0) = −m, so that m > 1 ⇒ f(0) < 0.

Proof of result 2

We rewrite equation (A.1) as a single fraction:

f(y) =
num(y)
den(y)

(A.2)

where

num(y) = −m + 2y + my2 − ym+1 − (n− 2m)yn−m + (n− 2m− 1)yn−m+1 (A.3)

and
den(y) = 1− y2 − ym+1 + ym+2 − yn−m + yn−m+1. (A.4)

Now observe that num(1) = den(1) = 0, so that f(1) is an indeterminate form of
type 0

0 . We may evaluate it by l’Hôpital’s rule (see [7]). We shall use l’Hôpital’s rule (or
one version of it) to find limy→1

num(y)
den(y) . To be allowed to use the rule there has to exist an

open interval (a, b) containing 1 such that

(i) The derivatives of num(y) and den(y) exist on the interval except possibly at 1

(ii) The derivative of den(y) is non-zero on the interval except possibly at 1

We obviously have (i) since num(y) and den(y) are both polynomials in y. We can
show that (ii) is true by differentiating den(y) and expressing the result as

d

dy
den(y) = (ym+1−y)+(m+1)(ym+1−ym)+(n−m)(yn−m−yn−m−1)+(yn−m−y). (A.5)

We are assuming that 1 6 m < n − 1, so we can say that n − m > 0, n − m − 1 > 0,
and m + 1 > 0 in equation (A.5). Now if y < 1, yt1 > yt2 for any real t1, t2 such that
0 6 t1 < t2. But then each bracket of y terms in (A.5) is negative. So d

dy den(y) < 0.
Further, if y > 1, yt1 < yt2 for 0 6 t1 < t2. But then each bracket of y terms in (A.5) is
positive. So d

dy den(y) > 0. Hence d
dy den(y) 6= 0 whenever y 6= 1. This ensures we have

(ii) for any open interval containing 1.

We may therefore use l’Hôpital’s rule. So let us differentiate num(y) (equation (A.3))
to get

d

dy
num(y) = 2+2my−(m+1)ym−(n−2m)(n−m)yn−m−1+(n−2m−1)(n−m+1)yn−m.

(A.6)
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Proof of theorem 3.1

By equation (A.5) we find d
dy den(y)

∣∣∣
y=1

= 0 and by (A.6) we get d
dy num(y)

∣∣∣
y=1

= 0.

So we have another indeterminate form of type 0
0 ! We require another application of

l’Hôpital’s rule, provided this is allowable. Once again, condition (i) (for d
dy num(y) and

d
dy den(y)) will be satisfied since they are both polynomials, and we shall argue condition

(ii) (for d2

dy2 den(y)) retrospectively. Let us, then, find the second derivatives of num(y)
and den(y). From equations (A.6) and (A.5), and using our assumption that m < n − 1
(so that n−m− 2 > 0), we may write

d2

dy2
num(y) = 2m− (m + 1)mym−1 − (n− 2m)(n−m)(n−m− 1)yn−m−2

+(n− 2m− 1)(n−m + 1)(n−m)yn−m−1 (A.7)

d2

dy2
den(y) = −2− (m + 1)mym−1 + (m + 2)(m + 1)ym

−(n−m)(n−m− 1)yn−m−2 + (n−m + 1)(n−m)yn−m−1. (A.8)

It follows that
d2

dy2
num(y) = 2m2 + m(2− 4n) + (n2 − n) (A.9)

and that
d2

dy2
den(y) = 2n. (A.10)

Equation (A.8) shows that d2

dy2 den(y) is a polynomial in y, so it must be continuous.
By (A.10) we see that it takes the value 2n, which is > 0, at y = 1. It must then be that
there is an open interval of y containing 1 on which the function is non-zero. If there
were not, then there would exist an open interval containing 1 in which points arbitrarily
close to 1 would be zero, so that the function would be discontinuous at 1. But as we just
noted, the function is continuous. Hence condition (ii) (for this function) is satisfied.

Thus l’Hôpital’s rule is again valid and in fact we’ve already taken the appropriate
limits in (A.9) and (A.10). So we have

lim
y→1

f(y) =
2m2 + m(2− 4n) + (n2 − n)

2n
. (A.11)

So f(1) exists and we want to know when it is positive. Since the denominator
in (A.11) is necessarily positive, we will have f(1) > 0 when the numerator is positive:

2m2 + m(2− 4n) + (n2 − n) > 0. (A.12)

We treat this as a quadratic in m. Since the coefficient of the leading term is positive,
this quadratic will be positive whenever m is either less than the smaller root or greater
than the larger root of the following equation:

2m2 + m(2− 4n) + (n2 − n) = 0. (A.13)

In other words we find the quadratic to be positive when either

m < n− 1
2
− 1

2

√
2n2 − 2n + 1 (A.14)
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Proof of theorem 3.1

or
m > n− 1

2
+

1
2

√
2n2 − 2n + 1. (A.15)

Now, since we assumed at the start that n > 5 we certainly have n > 2. But then
2n2 > 2n or 2n2 − 2n + 1 > 1, so that inequalities (A.14) and (A.15) reassuringly do not
involve the square root of a negative number. In fact since 2n2 − 2n + 1 > 1, the positive
square root of 2n2 − 2n + 1 is also > 1, so that

n− 1
2

+
1
2

√
2n2 − 2n + 1 > n− 1

2
+

1
2

= n > m. (A.16)

Thus inequality (A.15) cannot possibly hold.

Finally inequality (A.14) may be re-expressed as

m

n
< kn = 1− 1

2n
− 1

2n

√
2n2 − 2n + 1. (A.17)

This proves result 2.

Proof of result 3

Assume n > 5. Then (n− 1)(n− 4) > 0. This is equivalent to

(2n− 3)2 > 2n2 − 2n + 1. (A.18)

As we saw just before inequality (A.16), 2n2 − 2n + 1 > 1 for n > 2, so this must be true
for n > 5. Also 2n − 3 > 0 for n > 5. So we may take the positive square root in (A.18)
i.e. we can write

2n− 3 >
√

2n2 − 2n + 1. (A.19)

This is easily rearranged:

1− 1
2n

− 1
2n

√
2n2 − 2n + 1 >

1
n

. (A.20)

But the left hand side of (A.20) is kn. So kn > 1
n . If we again use the fact that 2n2−2n+1 >

1 for n > 5 we then trivially see that

−1
2

√
2n2 − 2n + 1 < −1

2
(A.21)

or
nkn = n− 1

2
− 1

2

√
2n2 − 2n + 1 < n− 1. (A.22)

Hence kn < n−1
n , so that kn ∈

(
1
n , n−1

n

)
as required.

Proof of result 4

Earlier we wrote f(y) as a function num(y)
den(y) of two polynomials (equations (A.2) to (A.4)).

In particular it follows that f(y) is continuous on [0, 1] if den(y) 6= 0 on [0, 1) and limy→1 f(y)
exists and is finite. But we have seen in the proof of result 2 that limy→1 f(y) exists and
is finite. The proof here will certainly be complete then if we show that den(y) > 0 on
[0, 1).
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Proof of theorem 3.1

Recall equation (A.4):

den(y) = 1− y2 − ym+1 + ym+2 − yn−m + yn−m+1.

In other words:

den(y) = (1− y2) + (ym+2 − ym+1) + (yn−m+1 − yn−m). (A.23)

But notice that for 0 6 y < 1, 1− y2 > 0, ym+2− ym+1 > 0, and yn−m+1− yn−m > 0 since
m + 1 > 0 and n−m > 0. Hence the right hand side of (A.23) is positive and the proof is
complete.

Proof of result 5

We have

kn = 1− 1
2n

− 1
2n

√
2n2 − 2n + 1 = 1− 1

2n
− 1

2n

√
2(n− 1

2
)2 +

1
2
. (A.24)

So for large n:

kn ≈ 1− 1
2n

√
2(n− 1

2
)2 = 1− 1

2n

√
2(n− 1

2
)

≈ 1− n
√

2
2n

= 1−
√

2
2

=
2−

√
2

2
. (A.25)

Proof of part C. If m = n − 1 then, using equation (A.3), the numerator in f(y) = num(y)
den(y)

becomes
num(y) = 1− n + ny − yn. (A.26)

We rewrite this as follows:

num(y) = −n(1− y) + (1− yn)

= −n(1− y) + (1− y)(1 + y + y2 + · · ·+ yn−1)

= (1− y)(1 + y + y2 + · · ·+ yn−1 − n). (A.27)

Now recall that a solution θ < 0 is equivalent to a solution to f(y) = 0 for y ∈ [0, 1).
Recall also by result 4 of part B that den(y) > 0 for y ∈ [0, 1). Then, for a solution θ < 0
to exist, there must be a y ∈ [0, 1) such that num(y) = 0. But for this range of y, 1− y > 0
and

1 + y + y2 + · · ·+ yn−1 < 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ntimes

= n,

so that the product of the brackets in (A.27) is necessarily negative. So there are no solu-
tions.
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Proof of theorem 3.1

Conjecture 3. 1. For n > 5, a solution θ < 0 exists only for m < knn. When it does exist it is
unique.

A possible proof of this would involve showing firstly that f(0) < f(1) and secondly
that the function f(y) is strictly increasing on (0, 1). It is in fact relatively straightforward
to show that the first of these assuming m < n − 1. We know after all that f(0) = −m

and (by equations (A.9) and (A.10)) that

f(1) =
2m2 + m(2− 4n) + (n2 − n)

2n
.

Hence by assuming the reverse of what we want, namely f(0) > f(1) we get, after a little
rearrangement

(n−m− 1)(n−m) < −m,

which must be false for n−m− 1 > 0 or (as we just mentioned) m < n− 1.

To prove that f(y) is strictly increasing would be thoroughly unpleasant, however.
To do this would involve demonstrating that the second derivative of f(y) is positive on
(0, 1). I actually found this second derivative using the computer algebra system maxima
but the expression was over a page and a half long! When I factorised it, it was more than
three pages long! Hence I leave this as an exercise for the reader.
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Appendix B

Program listings

I wrote dozens of programs for this project but due to considerations of space I
can only present streamlined versions of the two most important here.

#!/usr/local/bin/python
# AJT 2005 June,July,August
# mcopy -o -v ./Chapters2and4pics.py a:
# to make bar charts in chapter 2, use linux command:
# geng 4 | showg -e -l0 | ./rearrangeg.py |
# ./Chapters2and4pics.py | ./bars3.py | dm “x1+1.0” “x2” | graph -Tx -C
# to make colour grids in chapter 4:
# geng 5 | showg -e -l0 | ./rearrangeg.py | ./Chapters2and4pics.py | matrix2pdf3.py

import re 10
from sys import stdin,stderr,exit,argv
from math import exp,log
graph=re.compile(r’ˆGraph (\d+),’ )
nm=re.compile(r’(\d+)\s+(\d+)’ )
ed=re.compile(r’\s*(?P<a>\d+)\s+(?P<b>\d+)’ )
ng=0
maxng=10000
graphs=[ ]

class G: 20
’’’

Represents a graph

’’’

def init (s,ng,n,m,adjdict,adjmatrix):
s.ng=ng # graph number
s.n=n # number of nodes
s.m=m # number of edges
s.adjdict=adjdict # adjacency dictionary
s.adjmatrix=adjmatrix # adjacency matrix

def repr (s): 30
# return ’G(%d,%d,%g)’%(s.ng,s.n,s.m)
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return ’Graph %d has %d nodes, %d edges’ %(s.ng,s.n,s.m)
# return ’Graph has adjacency dictionary’, s.adj

def get nnodes(s): # this gives security apparently
return s.n

def get nedges(s):
return s.m

def get adjacencydict(s):
return s.adjdict

def get adjacencymatrix(s): 40
return s.adjmatrix

def iter (s):
return iter(s.adjdict.keys())

def Ham1 (theta, graph): # calculates Bernoulli Hamiltonian
Hamiltonian = theta*(graph.m)
return Hamiltonian

def Ham4 (theta, graph): # calculates twostar Hamiltonian
Hamiltonian = 0 50
for i in range(graph.n):

temp = len(graph.adjdict[i])
Hamiltonian+=theta*temp*(temp−1)

return Hamiltonian/2

def Ham5 (theta1, theta2, graph): # “edges-twostars” Hamiltonian
# theta1 edge parameter, theta2 twostar parameter
Hamiltonian=0
for i in range(graph.n):

temp = len(graph.adjdict[i]) 60
Hamiltonian+=theta2*temp*(temp−1)

Hamiltonian= Hamiltonian/2
Hamiltonian += theta1*(graph.m)
return Hamiltonian

def Ham10 (theta1,theta2, graph): # “nodes of degree1 and degree2” Hamiltonian
nodes of degree1=0
for i in range(graph.n):

if (len(graph.adjdict[i])==1):
nodes of degree1+=1 70

nodes of degree2=0
for i in range(graph.n):

if (len(graph.adjdict[i])==2):
nodes of degree2+=1

Hamiltonian = theta1*nodes of degree1 + theta2*nodes of degree2
return Hamiltonian

while ng<maxng:
line=stdin.readline()
if not line: break 80
x=graph.match(line)
if x: # ’Graph’ matched
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ng+=1
line=stdin.readline()
y=nm.match(line)
if not y:

print >>stderr,’nm match failed’

exit(1)
n,m=map(int,y.groups()) # new graph, # vertices and # edges
# print ’graph %d n=%d m=%d’%(ng,n,m) 90
adj=dict([(i,[ ]) for i in range(n)])
line=stdin.readline()
for e in re.finditer(ed,line):

a,b=int(e.group(’a’ )),int(e.group(’b’ ))
adj[a].append(b)
adj[b].append(a)

# print ’ ’,len(adj[0]),’edges at node 0’
# print ’ adjacency dictionary: ’,adj
# next we define adjacency matrix. we zero everything initially
matrix=dict([(i,[0]*n) for i in range(n)]) 100
# now we can fill in the 1’s by using the adjacency dictionary
for i in range(n):

for j in range(n):
if j in adj[i]:

matrix[i][j]=matrix[j][i]=1
# print ’adjacency matrix is’, matrix
graphs.append(G(ng,n,m,adj,matrix))

#print ’Using Hamiltonian to control the number of edges only: \n’
Z=0.0 110
theta=0.3
for graph in graphs:

H = Ham1(theta,graph) # Replace by Ham4 to control twostars
Z+= exp(H)

if verbosity>1: print ’For Bernoulli model Z is ’ , Z
for k,graph in enumerate(graphs):

H = Ham1(theta,graph) # Replace by Ham4 to control twostars
P = exp(H)/Z
#print k,P # printing this alone as output can be used to plot them

120
# next we shall combine some observables
#print ’Using Hamiltonian to control total edges AND number of 2-stars: \n’
Z=0
theta=0.1 # edge parameter
alpha=0.1 # two-stars parameter
for graph in graphs:

H = Ham5(theta,alpha,graph)
Z+= exp(H)

for k,graph in enumerate(graphs):
H = Ham5(theta,alpha,graph) 130
P = exp(H)/Z
#print k,P # printing this alone as output can be used to plot them
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# Next we plot loglikelihood function for a given graph where observable is edges
theta=−4.0
while theta<4.0:

Z=0.0
for graph in graphs:

H = Ham1(theta,graph)
Z+= exp(H) 140

# now Z is partition function for theta value in current step of the loop
loglikely = Ham1(theta,graphs[1]) − log(Z)
#print theta, loglikely
theta+=0.01

# Next we plot likelihood function (2d colour grid) for a given graph
# Ham5 - edges and two-stars
# Ham10 - nodes of degree1 (theta) and nodes of degree2 (alpha)
theta=−3.0
while theta<3.01: 150

alpha=−3.0
while alpha<3.01:

Z=0.0
for graph in graphs:

H = Ham5(theta,alpha,graph)
Z+= exp(H)
# now Z is partition function for theta, alpha in current step of the loop

likely = exp(Ham10(theta,alpha,graphs[0])) / Z
print likely,
alpha+=0.15 160

print ""

theta+=0.15

// AJT July and August 2005
// gcc -Wall MCMCMLE08.c -o MCMCMLE08 -lm && ./MCMCMLE08
// gcc -Wall MCMCMLE08.c -o MCMCMLE08 -lm && time ./MCMCMLE08
// mcopy -o -v MCMCMLE08.c a:
// Program to run an MCMC simulation of an ERG model to find MLE
// The ensemble will be all undirected graphs on n nodes

#include <stdio.h>

#include <stdlib.h>

#include <math.h> 10
#include <time.h>

// prototypes next
double minof2(double,double);
int edges(char**,int); // finds no. of edges of undirected graph
int* MCMCBernoulliMetHastInv(char**,int,int,int,double);
// performs MCMC simulation where observable is edges
// uses Metropolis-Hastings sampling plus inversions
int** MCMCEdgesTwostarsTrianglesMetHast(char** observed graph, int n,
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int length of chain, int sample size, double theta chain1, double theta chain2, 20
double theta chain3); // performs MCMC simulation where graph observables are
// edges, twostars, and triangles, uses Metropolis-Hastings sampling
void invert graph(char**, int);
double MLEfunction1(int*,int,double);
// finds MLE using output from MCMCBernoulliMetHastInv
double* MLEfunctionEdgesTwostarsTriangles(int** vector of change statistics,
int sample size, double theta chain1, double theta chain2, double theta chain3);
char** Sampson monastery example graph();

// next - globals! 30
const int n=18; // no. of edges of graphs in ensemble
const double theta chain=0.0; // parameter value to be
// used in MCMCBernoulliMetHastInv simulation.
const double theta chain1=3.5;
const double theta chain2=−0.6;
const double theta chain3=1.1;
const int length of chain=30000000;
const int sample size=100000;

int main() { 40
int* vector of change statistics Sampson;
vector of change statistics Sampson=MCMCBernoulliMetHastInv(
Sampson monastery example graph(),18,length of chain,sample size,theta chain);
double MLE Sampson;
MLE Sampson=MLEfunction1(vector of change statistics Sampson,sample size,theta chain);
//printf(“MLE Sampson is %f\n”,MLE Sampson);
free(vector of change statistics Sampson);
int i;

int** vector of change statistics SampsonNew; 50
vector of change statistics SampsonNew = MCMCEdgesTwostarsTrianglesMetHast(
Sampson monastery example graph(), n, length of chain, sample size, theta chain1,
theta chain2, theta chain3);
for (i=0; i<sample size; i++) {

//printf(“vector of change statistics SampsonNew[0] value (edges)
//%d\n“,vector of change statistics SampsonNew[0][i]);
//printf(“vector of change statistics SampsonNew[1] value (twostars)
//%d\n“,vector of change statistics SampsonNew[1][i]);
//printf(“vector of change statistics SampsonNew[2] value (triangles)
//%d\n“,vector of change statistics SampsonNew[2][i]); 60

}
double* optimum theta;
optimum theta = MLEfunctionEdgesTwostarsTriangles
(vector of change statistics SampsonNew,
sample size, theta chain1, theta chain2, theta chain3);

for (i=0; i<3; i++) { free(vector of change statistics SampsonNew[i]); }
free(optimum theta);
return 0;

} 70
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// function definitions next

// Sampson monastery example. Frank & Strauss Markov graphs page 839
#define AE(i,j) example graph[i−1][j−1]=1;
char** Sampson monastery example graph() {

char** example graph=graph(18,0,0);
AE( 1, 2) AE( 1, 3) AE( 1, 5) AE( 1,15)
AE( 2, 3) AE( 2, 4) AE( 2, 5) AE( 2, 6) AE( 2, 7) AE( 2, 9) AE( 2,10)AE( 2,15)
AE( 3, 5) AE( 3, 6) AE( 3, 7) AE( 3, 8) AE( 3, 9) AE( 3,10) 80
AE( 4, 5) AE( 4, 6) AE( 4, 7) AE( 4,10)
AE( 5, 6) AE( 5, 7)
AE( 6, 7) AE( 6,11) AE( 6,14) AE( 6,15)
AE( 7, 9) AE( 7,10)
AE( 8, 9) AE( 8,10) AE( 8,11) AE( 8,12) AE( 8,13) AE( 8,14)
AE( 9,10) AE( 9,11) AE( 9,12) AE( 9,13) AE( 9,16) AE( 9,17) AE( 9,18)
AE(10,11) AE(10,12) AE(10,13) AE(10,14) AE(10,17) AE(10,18)
AE(11,12) AE(11,14)
AE(12,13) AE(12,14)
AE(13,14) AE(13,15) 90
AE(15,16) AE(15,17) AE(15,18)
AE(16,17) AE(16,18)
AE(17,18)
int i,j;
for (i=0; i<18; i++) {

for (j=0; j<18; j++) {
if (j<i) { example graph[i][j]=example graph[j][i]; }

}
}
return example graph; 100

}
#undef AE

inline double minof2(double x,double y) {
return x<y?x:y;

}

int edges(char** graph, int n) {
int m=0; // will be returned as no. of edges
int i,j; // loop variables 110
for (i=0; i<n; i++) {

for (j=i+1; j<n; j++) {
m+=graph[i][j];

}
}
return m;

}

int** MCMCEdgesTwostarsTrianglesMetHast(char** graph, int n, int length of chain,
int sample size, double theta chain1, double theta chain2, double theta chain3) { 120

int i,k; // loop variables

69



Program listings

int** vector of change statistics; // we will return this
int node1, node2; // a randomly chosen dyad
double exponent, pi1, pi2; // used in finding probabilities
double probability of change;
int running total change in edges=0;
int running total change in twostars=0;
int running total change in triangles=0;
int no neighbours node1, no neighbours node2;
int no neighbours common node1node2; 130
int edge changed;
int no twostars changed; // used to find no. twostars changed on a simulation step
int no triangles changed;
int definite edge change; // no. of edge changes on each step (+1 if edge added,

// -1 if edge removed)
int definite twostar change;
int definite triangle change;
double x; // will be a random no. from 0 to 1
int counter=0; // will be used as a sort of loop variable

// in defining vector of change statistics 140
vector of change statistics=(int**)malloc(3*sizeof(int*));
if (vector of change statistics==NULL) {

fprintf(stderr,"Out of memory, location X1\n" );
exit(−1);

}
for (i=0; i<3; i++) {

vector of change statistics[i]=(int*)malloc(sample size*sizeof(int));
if (vector of change statistics[i]==NULL) {

fprintf(stderr,"Out of memory, location X2\n" );
exit(−1); 150

}
}

//vector of change statistics[0] will be edges
//vector of change statistics[1] will be twostars
//vector of change statistics[2] will be triangles
srand(time(NULL)); // “seed” the random number generator

for (i=0; i<length of chain; i++) { // Here goes Chain!!!
// first we randomly select a dyad
node1=rand()%n; // node1 is now a random int from 0 to n-1 160
node2=node1;
while (node2==node1) {

node2=rand()%n;
}
// Now node1 and node2 are 2 DIFFERENT random ints from 0 to n-1
definite edge change=0;
definite twostar change=0;
definite triangle change=0;
no neighbours node1=0;
no neighbours node2=0; 170
no neighbours common node1node2=0;
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for (k=0; k<n; k++) {
no neighbours node1+=graph[node1][k];
no neighbours node2+=graph[node2][k];
if (graph[node1][k]==1) {

if (graph[node2][k]==1) {
no neighbours common node1node2+=1;

}
} 180

}
// Now no neighbours node1 is exactly that for the graph on current step!! etc. .
// Now we use Metropolis-Hastings method to decide
// if (node1,node2) should be an edge or not
// Notice that it may already be an edge in fact

x=(double)rand()/RAND MAX; // a random number from 0 to 1

if (graph[node1][node2]==1) { // we want to know if we should REMOVE the edge
edge changed=1; 190
no twostars changed=no neighbours node1 + no neighbours node2 − 2;
no triangles changed=no neighbours common node1node2;

exponent= − (theta chain1*edge changed + theta chain2*no twostars changed
+ theta chain3*no triangles changed);
pi2=exp(exponent);
probability of change=minof2(1,pi2);

if (probability of change>x) { // we remove edge (node1,node2)
graph[node1][node2]=0; 200
graph[node2][node1]=0;
definite edge change= − edge changed;
definite twostar change= − no twostars changed;
definite triangle change= − no triangles changed;

}
} else { // we want to know if we should ADD the edge

edge changed=1;
no twostars changed=no neighbours node1 + no neighbours node2;
no triangles changed=no neighbours common node1node2; 210

exponent=theta chain1*edge changed + theta chain2*no twostars changed
+ theta chain3*no triangles changed;
pi1=exp(exponent);
probability of change=minof2(1,pi1);

if (probability of change>x) { // we add edge (node1,node2)
graph[node1][node2]=1;
graph[node2][node1]=1;
definite edge change= edge changed; 220
definite twostar change= no twostars changed;
definite triangle change= no triangles changed;

}
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}
running total change in edges+=definite edge change;
running total change in twostars+=definite twostar change;
running total change in triangles+=definite triangle change;

if (i>=(length of chain−sample size)) {
vector of change statistics[0][counter]=running total change in edges; 230
vector of change statistics[1][counter]=running total change in twostars;
vector of change statistics[2][counter]=running total change in triangles;
counter+=1;

}
} // Here ends the Chain
return vector of change statistics;

} // Here ends the function

int* MCMCBernoulliMetHastInv(char** observed graph, int n, int length of chain,
int sample size, double theta chain) { 240

int* vector of change statistics; // we will return this
double nchoose2=n*(n−1)*0.5;
int current edges=edges(observed graph,n);
double temp, prob of inversion;
int i; // loop variable
int node1, node2; // a randomly chosen dyad
double exp1,exp2; // temporary variables
double p1, p2; // probabilities that will help determine

// the step in the Chain
int running total change in edges=0; 250
int definite edge change; // no. of edge changes on each step

// of the simulation (+1 if edge added,
// -1 if edge removed)

double x; // will be a random no. from 0 to 1
int counter=0; // will be used as a sort of loop variable

// in defining vector of change statistics
srand(time(NULL)); // “seed” the random number generator
char** graph=observed graph;
// we allocate memory
vector of change statistics=(int*)malloc(sample size*sizeof(int)); 260
if (vector of change statistics==NULL) {

fprintf(stderr,"Out of memory, location 3\n" );
exit(−1);

}

for (i=0; i<length of chain; i++) { // Here goes Chain!!!
// first we ask if we should try an inversion step
if (i%100==0) { // replace with i<0 to run chain with no inversions

temp=theta chain*(nchoose2−(2.0*current edges));
temp=exp(temp); 270
prob of inversion=minof2(1,temp);
srand(i);
x=(double)rand()/RAND MAX;
if (prob of inversion>x) {

72



Program listings

invert graph(graph,n);
running total change in edges+=nchoose2−2*current edges;
current edges=nchoose2−current edges;

}
if (i>=(length of chain−sample size)) {

vector of change statistics[counter]=running total change in edges; 280
counter+=1;

}
continue; // if we do inversion, we go to

// next time step of chain
}
// now we randomly select a dyad
node1=rand()%n; // node1 is now a random int from 0 to n-1
node2=node1;
while (node2==node1) {

node2=rand()%n; 290
}
// Now node1 and node2 are 2 DIFFERENT random ints from 0 to n-1
//printf(“node1,node2 are %d,%d\n”,node1,node2);
definite edge change=0;
exp1=exp(−theta chain);
exp2=1.0/exp1;
p1=minof2(1,exp1);
p2=minof2(1,exp2);

// Now we use Metropolis-Hastings method to decide 300
// if (node1,node2) should be an edge or not
// Notice that it may already be an edge in fact
if (observed graph[node1][node2]==1) {

x=(double)rand()/RAND MAX;
if (p1>x) { // we remove edge (node1,node2)

graph[node1][node2]=0;
graph[node2][node1]=0;
definite edge change=−1;

}
} else { 310

x=(double)rand()/RAND MAX;
if (p2>x) { // we add edge (node1,node2)

graph[node1][node2]=1;
graph[node2][node1]=1;
definite edge change=1;

}
}
current edges+=definite edge change;
running total change in edges+=definite edge change;
if (i>=(length of chain−sample size)) { 320

vector of change statistics[counter]=running total change in edges;
counter+=1;

}
} // Here ends the Chain
return vector of change statistics;
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} // Here ends the function

void invert graph(char** graph, int n) {
int i,j; // loop variables
for (i=0; i<n; i++) { 330

for (j=0; j<n; j++) {
if (i!=j) {

graph[i][j]=1−graph[i][j];
}

}
}

}

double MLEfunction1(int* vector of change statistics, int sample size,
double theta chain) { 340

double biggest=−1e308; // a small number to start with
double estimate, temp1,temp2,temp3; // estimate will be our estimate

// of log likelihood
int i; // loop variable
double theta, optimum theta=0.0; // optimum theta will be

// returned as our MLE
for (theta=−1.0; theta<1.0; theta+=0.1) {

estimate=0.0;
for (i=0; i<sample size; i++) {

temp1=theta−theta chain; 350
temp2=vector of change statistics[i];
temp3=temp1*temp2;
estimate+=(exp(temp3)−estimate)/(i+1);

}
estimate=−log(estimate);
if (estimate>biggest) {

optimum theta=theta;
biggest=estimate;

}
printf("%f %f\n" ,theta,estimate); // can plot theta vs. loglikely approx 360

}
return optimum theta;

}

double* MLEfunctionEdgesTwostarsTriangles(int** vector of change statistics,
int sample size, double theta chain1, double theta chain2, double theta chain3) {

double biggest=−1e308; // a small number to start with
double* optimum theta;
optimum theta=(double*)malloc(3*sizeof(double));
// optimum theta[0] will be optimum value of parameter for edges 370
// optimum theta[1] for twostars, optimum theta[2] for triangles
int i; // loop variable
double estimate; // estimate will be our estimate of loglikelihood
double theta1, theta2, theta3; // parameter space, over which we maximise loglikelihood
double temp1, temp2, temp3, tempsufficient1, tempsufficient2, tempsufficient3, tempfinal;
if (optimum theta==NULL) {
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fprintf(stderr,"Out of memory, location Z\n" );
exit(−1);

}
for (theta1=−2.0; theta1<5.01; theta1+=0.5) { 380

for (theta2=−1.0; theta2<0.21; theta2+=0.2) {
for (theta3=−1.0; theta3<1.41; theta3+=0.3) {

estimate=0.0;
for (i=0; i<sample size; i++) {

temp1=theta1−theta chain1;
temp2=theta2−theta chain2;
temp3=theta3−theta chain3;
tempsufficient1=vector of change statistics[0][i];
tempsufficient2=vector of change statistics[1][i];
tempsufficient3=vector of change statistics[2][i]; 390
tempfinal=temp1*tempsufficient1+temp2*tempsufficient2+temp3*tempsufficient3;
estimate+=(exp(tempfinal)−estimate)/(i+1);

}
estimate=−log(estimate);
if (estimate>biggest) {

optimum theta[0]=theta1;
optimum theta[1]=theta2;
optimum theta[2]=theta3;
biggest=estimate;

} 400
printf("theta1,theta2,theta3,loglikelihood are %f,%f,%f,%f\n" ,
theta1,theta2,theta3,estimate);

}
}

}
printf("MLE is optimum_theta[0], optimum_theta[1], optimum_theta[2] is

%f,%f,%f\n" ,
optimum theta[0], optimum theta[1], optimum theta[2]);
return optimum theta; //remember to free memory for this after function call in main

} 410
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