Trip planning in the presence of stochastic delays

Keith Briggs & Dhruv Sethi keith.briggs@bt.com

Mobility Research Centre, BT Innovation & Design http://keithbriggs.info

BICS Industrial Complexity Forum 2009-07-10 11:00

BT Research - Adastral Park

Bath, all departures

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Bath to Bristol

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

The q-exponential law

- Exponential law: $f_{\beta}(t) \propto \exp(-\beta t)$
- $e_{q,\beta}(x) := (1/Z)(1 + \beta(q-1)x)^{1/(1-q)},$ $\beta > 0, 1 < q < 2$
- $Z := \frac{1}{\beta(2-q)}$
- mean $\mu := \frac{1}{\beta(3-2q)}$
- $\lim_{q\to 1} e_{q,\beta}(t) = \exp(-\beta t)/Z$
- large q gives a power-law (long tail)

Short paths in a weighted digraph

Bath to Manchester, shortest mean time

Bath to Manchester, second shortest mean time

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$IPS \rightarrow PBO \rightarrow DON \rightarrow MAN dep. 1200$

$IPS \rightarrow PBO \rightarrow DON \rightarrow MAN dep. 12:00$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

IPS 12:02 -> PBO 13:37 0.8380 PBO 13:46 -> DON 14:43 0.7731 DON 14:57 -> MAN 16:36 p=0.7377 DON 15:55 -> MAN 17:37 p=0.0353 PBO 13:58 -> DON 14:53 0.0466 DON 14:57 -> MAN 16:36 p=0.0405 DON 15:55 -> MAN 17:37 p=0.0061 PBO 14:25 -> DON 15:35 0.0173 DON 15:55 -> MAN 17:37 p=0.0169 DON 16:42 -> MAN 18:02 p=0.0004 PBO 14:46 -> DON 15:43 0.0009 DON 15:55 -> MAN 17:37 p=0.0009 TPS 12:32 -> PBO 14:07 0.1551 PBO 14:25 -> DON 15:35 0.1505 DON 15:55 -> MAN 17:37 p=0.1468 DON 16:42 -> MAN 18:02 p=0.0036 PBO 14:46 -> DON 15:43 0.0041 DON 15:55 -> MAN 17:37 p=0.0039 DON 16:42 -> MAN 18:02 p=0.0002

$IPS \rightarrow PBO \rightarrow DON \rightarrow MAN dep. 12:00$

900

э

$IPS \rightarrow PBO \rightarrow DON \rightarrow MAN dep. 1200$

Problem formulation

- Given: a weighted digraph g, a timetable τ(n₀, n₁) for each arc (n₀, n₁)∈g, an arrival time α, and parameters τ>0, ε>0.
- To find: a route ρ and maximal departure time t such that Prob[arrival after $\alpha + \tau$] $< \epsilon$

Algorithm

- Phase 0: find set P of the 3 or 4 paths of shortest mean time
- Phase 1: for each path p∈P, and for a given start time, propagate all probabilities through the graph
- Compute probability $\rho = \operatorname{Prob}[\operatorname{arrival} \operatorname{after} \alpha + \tau]$

• If $\rho > \epsilon$, repeat with an earlier start time.

IPS→MAN arr. 19:00

Iter 1: Probabilit	y of arri	ving by 19:00 is 99.9%	
Ipswich	12:02 ->	Peterborough	13:37
Peterborough	14:56 ->	Doncaster	15:55
Doncaster	16:42 ->	Manchester Piccadilly	18:02
Iter 2: Probabilit	y of arri	ving by 19:00 is 98.3%	
Ipswich	12:02 ->	Peterborough	13:37
Peterborough	14:56 ->	Doncaster	15:55
Doncaster	16:53 ->	Sheffield	17:20
Sheffield	17:40 ->	Manchester Piccadilly	18:36
Iter 3: Probability of arriving by 19:00 is 95.7%			
Ipswich	12:02 ->	Peterborough	13:37
Peterborough	14:56 ->	Doncaster	15:55
Doncaster	17:01 ->	Leeds	17:36
Leeds	17:55 ->	Manchester Piccadilly	18:49

Reference

K M Briggs & C Beck, *Modelling train delays with q-exponential functions* Physica **A 378**, 498–504 (2007).

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで