Graph models of wireless networks

Keith Briggs
keith.briggs@bt.com

Mobility Research Centre
BT Innovate
http://keithbriggs.info

University of Essex Maths 2009-02-05 1400
Corrected version 2009-02-06
Wireless networks
PPPP(\(\lambda\)): definitions and statistical properties

- PPPP(\(\lambda\)): planar Poisson point process

\[f_k(x) = 2(\frac{\lambda}{\pi})^k \Gamma(k) \exp(-\frac{\lambda \pi x^2}{2}) x^{2k-1} \]

- Mean distances are \(\frac{1}{2} \lambda - \frac{1}{2}, \frac{3}{4} \lambda - \frac{1}{2}, \frac{15}{16} \lambda - \frac{1}{2}, \ldots\)

- Also binomial PPP

- Also nonhomogeneous case
PPPP(λ): definitions and statistical properties

- PPPP(λ): planar Poisson point process
 - region R has Poi($\lambda||R||$) points

- pdf of distance X to kth nearest neighbour ($k=1,2,3,...$) is
 $$f_k(x) = 2(\frac{\lambda}{\pi})^k \Gamma(k) \exp(-\frac{\lambda}{\pi}x^2)x^{2k-1}$$

- mean distances are $\frac{1}{2}\lambda - \frac{1}{2}$, $\frac{3}{4}\lambda - \frac{1}{2}$, $\frac{15}{16}\lambda - \frac{1}{2}$, ...

- also binomial PP

- also nonhomogeneous case
PPPP(λ): definitions and statistical properties

- PPPP(λ): planar Poisson point process
 - region R has $\text{Poi}(\lambda\|R\|)$ points
 - numbers in non-overlapping regions are independent

- pdf of distance X to kth nearest neighbour ($k = 1, 2, 3, ...$) is (Haenggi)
 \[f_k(x) = 2(\frac{\lambda}{\pi})^k \Gamma(k) \exp\left(-\frac{\lambda \pi x^2}{2}\right) x^{2k-1} \]

- mean distances are $\frac{1}{2}\lambda - \frac{1}{2}$, $\frac{3}{4}\lambda - \frac{1}{2}$, $\frac{15}{16}\lambda - \frac{1}{2}$, ...

- also binomial PP

- also nonhomogeneous case
PPPP(\(\lambda\)): definitions and statistical properties

- PPPP(\(\lambda\)): planar Poisson point process
 - region \(R\) has Poi(\(\lambda\|R\|\)) points
 - numbers in non-overlapping regions are independent
 - pdf of distance \(X\) to \(k\)th nearest neighbour (\(k=1, 2, 3, \ldots\)) is (Haenggi)

\[
f_k(x) = \frac{2(\lambda \pi)^k}{\Gamma(k)} \exp(-\lambda \pi x^2) x^{2k-1}
\]
PPPP(\(\lambda\)): definitions and statistical properties

- PPPP(\(\lambda\)): planar Poisson point process
 - region \(R\) has \(\text{Poi}(\lambda \| R\|)\) points
 - numbers in non-overlapping regions are *independent*
 - pdf of distance \(X\) to \(k\)th nearest neighbour \((k=1, 2, 3, \ldots)\) is (Haenggi)

\[
f_k(x) = \frac{2(\lambda \pi)^k}{\Gamma(k)} \exp(-\lambda \pi x^2) x^{2k-1}
\]

- mean distances are \(\frac{1}{2} \lambda^{-1/2}, \frac{3}{4} \lambda^{-1/2}, \frac{15}{16} \lambda^{-1/2}, \ldots\)
PPPP(\lambda): definitions and statistical properties

- PPPP(\lambda): planar Poisson point process
 - region \(R \) has Poi(\lambda\|R\|) points
 - numbers in non-overlapping regions are independent
 - pdf of distance \(X \) to \(k \)th nearest neighbour (\(k = 1, 2, 3, \ldots \)) is (Haenggi)
 \[
 f_k(x) = \frac{2(\lambda\pi)^k}{\Gamma(k)} \exp(-\lambda\pi x^2) x^{2k-1}
 \]
 - mean distances are \(\frac{1}{2} \lambda^{-1/2}, \frac{3}{4} \lambda^{-1/2}, \frac{15}{16} \lambda^{-1/2}, \ldots \)
- also binomial PP
- also nonhomogeneous case
PPPP(λ): radial generation

\triangleright $s = 0$

\triangleright do

$s \leftarrow s - \log(\text{Uniform}(0, 1))$

$\theta = 2\pi \text{Uniform}(0, 1)$

$r = \sqrt{s / (\pi \lambda)}$

$x = r \cos \theta$

$y = r \sin \theta$

\triangleright while $r < \text{desired maximum radius}$
GRG(λ, ρ): definitions and statistical properties

- take PPPP(λ); call them nodes
GRG(\(\lambda, \rho\)): definitions and statistical properties

- take PPPP(\(\lambda\)); call them \textit{nodes}
- connect nodes separated by less than \(\rho\) by \textit{links} or \textit{edges}
GRG(λ, ρ): definitions and statistical properties

- take PPPP(λ); call them *nodes*
- connect nodes separated by less than ρ by *links* or *edges*
- degree of a point (not necessarily a node) is defined as the number of Poisson points in its disk
GRG(\(\lambda, \rho\)): definitions and statistical properties

- take PPPP(\(\lambda\)); call them *nodes*
- connect nodes separated by less than \(\rho\) by *links* or *edges*
- degree of a point (not necessarily a node) is defined as the number of Poisson points in its disk
- distribution of degree is Poisson
GRG(λ, ρ): definitions and statistical properties

- take PPPP(λ); call them *nodes*
- connect nodes separated by less than ρ by *links* or *edges*
- degree of a point (not necessarily a node) is defined as the number of Poisson points in its disk
- distribution of degree is Poisson
- *degree* (D_0, D_1) of an edge is the degree of its end nodes
- surprisingly, the degree-degree correlation is the same, independently of λ and ρ!
GRG(\(\lambda, \rho\)): definitions and statistical properties

- take PPPP(\(\lambda\)); call them *nodes*
- connect nodes separated by less than \(\rho\) by *links* or *edges*
- degree of a point (not necessarily a node) is defined as the number of Poisson points in its disk
- distribution of degree is Poisson
- degree \((D_0, D_1)\) of an edge is the degree of its end nodes
- the cluster coefficient is \(1 - \frac{3\sqrt{3}}{4\pi}\)
GRG(\(\lambda, \rho\)): definitions and statistical properties

- take PPPP(\(\lambda\)); call them *nodes*
- connect nodes separated by less than \(\rho\) by *links* or *edges*
- degree of a point (not necessarily a node) is defined as the number of Poisson points in its disk
- distribution of degree is Poisson
- *degree* \((D_0, D_1)\) *of an edge* is the degree of its end nodes
- the cluster coefficient is \(1 - \frac{3\sqrt{3}}{4\pi}\)
- surprisingly, the degree-degree correlation is the same, independently of \(\lambda\) and \(\rho\)!
GRG(20, ρ) degree-degree distribution

$\rho=0.3$

$\rho=0.5$
If $X_0 \sim \text{Poi}(\lambda_0)$, $X_1 \sim \text{Poi}(\lambda_1)$, $X_2 \sim \text{Poi}(\lambda_1)$ are independent, and $Y_1 = X_1 + X_0$, $Y_2 = X_2 + X_0$, then

$$\text{corr}(Y_1, Y_2) = \frac{\lambda_0}{\lambda_0 + \lambda_1}$$
GRG(λ, ρ) degree-degree correlation

- If $X_0 \sim \text{Poi}(\lambda_0)$, $X_1 \sim \text{Poi}(\lambda_1)$, $X_2 \sim \text{Poi}(\lambda_1)$ are independent, and $Y_1 = X_1 + X_0$, $Y_2 = X_2 + X_0$, then

 \[
 \text{corr}(Y_1, Y_2) = \frac{\lambda_0}{\lambda_0 + \lambda_1}
 \]

- For PPPP, degree-degree correlation is $E[\text{corr}]

\[
= \int_0^\rho \frac{2\rho^2 \arccos(x/(2\rho)) - (x/2)\sqrt{4\rho^2 - x^2}}{\pi \rho^2} \frac{2x}{\rho^2} \, dx
\]

\[
= 1 - 3\sqrt{3}/(4\pi) \approx 0.5865
\]
GRG(λ, ρ) degree-degree correlation - square

exact (doable but messy); simulation
GRG($\lambda, \rho, \text{unit circle}$): degree distribution

- pdf of distance of a random point from the centre, given that it is within $1 - \rho$ of the edge:

$$f_\rho(x) = \frac{(4 - 2\rho)x + 2\rho - 2}{\rho^3 - 2\rho^2 + 2\rho} [1 - \rho < x < 1]$$
GRG(λ, ρ, unit circle): degree distribution

- pdf of distance of a random point from the centre, given that it is within $1-\rho$ of the edge:

$$f_\rho(x) = \frac{(4-2\rho)x + 2\rho - 2}{\rho^3 - 2\rho^2 + 2\rho} \left[1 - \rho < x < 1\right]$$

- area of overlap of circles radius 1 and ρ, centres x apart:

$$A(x) = \rho^2 \arccos \left(\frac{x^2 + \rho^2 - 1}{2x\rho} \right) + \arccos \left(\frac{x^2 - \rho^2 + 1}{2x} \right) - \frac{1}{2} \left[(1-x+\rho)(x+\rho-1)(x-\rho+1)(x+\rho+1) \right]^{1/2}$$
GRG(\(\lambda, \rho, \text{unit circle}\)): degree distribution

- pdf of distance of a random point from the centre, given that it is within \(1-\rho\) of the edge:

\[
f_\rho(x) = \frac{(4-2\rho)x + 2\rho - 2}{\rho^3 - 2\rho^2 + 2\rho} \left[1 - \rho < x < 1\right]
\]

- area of overlap of circles radius 1 and \(\rho\), centres \(x\) apart:

\[
A(x) = \rho^2 \arccos \left(\frac{x^2 + \rho^2 - 1}{2x\rho}\right) + \arccos \left(\frac{x^2 - \rho^2 + 1}{2x}\right) - \frac{1}{2} \left[(1-x+\rho)(x+\rho-1)(x-\rho+1)(x+\rho+1)\right]^{1/2}
\]

- Prob[\(d=k\)]=

\[
(1-\rho)^2 \text{Poi}(A(x), k) + \rho(2-\rho) \int_{1-\rho}^{1} \text{Poi}(A(x)\lambda) f_\rho(x) \, dx
\]

- where \(\text{Poi}(\mu, k) = e^{-\mu} \mu^k / k!\)
GRG(λ, ρ, unit circle) degree distribution

![Graph showing degree distribution with exact, simulation, and Poisson approximations, indicating edge effect.](image-url)
Poisson maxima 1

\(\{X_1, X_2, \ldots, X_n\}\) iid, \(\Pr[X_i = k] = e^{-\lambda} \frac{\lambda^k}{k!}\)
Poisson maxima 1

- $\{X_1, X_2, \ldots, X_n\}$ iid, $\Pr[X_i=k]=e^{-\lambda} \frac{\lambda^k}{k!}$
- $M_n=\max(X_i)$
\[\{X_1, X_2, \ldots, X_n\} \text{ iid, } \Pr[X_i = k] = e^{-\lambda} \frac{\lambda^k}{k!} \]

\[M_n = \max(X_i) \]

The distribution of the maximum of Poisson variables for \(\lambda = 1/2, 1, 2, 5 \) (left to right) and \(n = 10^0, 10^2, 10^4, \ldots, 10^{24} \)
Poisson maxima 2

- Anderson: $\exists I_n \in \mathbb{Z}$ s.t. $\Pr[M_n \in \{I_n, I_n+1\}] \to 1$
Poisson maxima 2

- Anderson: \(\exists I_n \in \mathbb{Z} \text{ s.t. } \Pr[M_n \in \{I_n, I_n+1\}] \to 1 \)
- Kimber: \(I_n \sim \log n / \log \log n \) as \(n \to \infty \)
Poisson maxima 2

- Anderson: \(\exists I_n \in \mathbb{Z} \text{ s.t. } \Pr[M_n \in \{I_n, I_n+1\}] \to 1 \)
- Kimber: \(I_n \sim \log n / \log \log n \) as \(n \to \infty \)

The maximal probability (with respect to \(I_n \)) that \(M_n \in \{I_n, I_n+1\} \) for \(\lambda = 1/2, 1, 2, 5 \) (left to right) and \(10^0 \leq n \leq 10^{40} \). The curves show the probability that \(M_n \) takes either of its two most frequently occurring values.
Poisson maxima 3

\[M_n \sim x_0 \equiv \log n / W \left(\frac{\log n}{e \lambda} \right) \]
Poisson maxima 3

- $M_n \sim x_0 \equiv \log n/W \left(\frac{\log n}{e \lambda} \right)$
- $M_n \sim x_1 = x_0 + \frac{\log \lambda - \lambda - \log(2\pi)/2 - 3 \log(x_0)/2}{\log(x_0) - \log \lambda}$
\[M_n \sim x_0 \equiv \log n/W \left(\frac{\log n}{e \lambda} \right) \]

\[M_n \sim x_1 = x_0 + \frac{\log \lambda - \lambda - \log(2\pi)/2 - 3 \log(x_0)/2}{\log(x_0) - \log \lambda} \]
Roman networks
Anglo-Saxon networks