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The primary problem

Given:

1. a railway network and a timetable

2. a passenger and an origin and destination

3. the time the passenger would like to reach the destination

4. the probability that the passenger would like to reach the
destination on time

Find:

1. the best route

2. the latest time the passenger should start from the origin
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More formally. . .

Let

• τ be the target arrival time

• ε be the probability that the passenger would like to reach the
destination on time (failure probability)

• td be the time the passenger departs from the origin

• Ta be the time the passenger arrives at the destination
(arrival time, a random variable)

Then the optimization problem is:

max td
subject to Prob[Ta>τ ]<1−ε
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Modelling train delay

In order to calculate Prob[Ta>τ ], we will need to solve the
following secondary problem:
• Given:

1. A route
2. A timetabled service for each train
3. A model of the distribution of delays for each train
4. A model of the distribution of starting time of the

passenger
• Find:

1. The probability distribution of the arrival time Ta for
the passenger at the destination
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Assumptions and notations
Assumptions:

• The departure times of any two trains are statistically
independent

• The order of the departure for trains may vary due to delay

• When changing trains, passengers always catch the first train
that departs to their next station on their chosen route

Notation:

Xi∼fi probability distribution function (pdf)

Fi cumulative distribution function (cdf)

Fi(t)=
∫ t

−∞
fi(x)dx

[[x>t]]=
{

1 if x>t,
0 otherwise
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The q-exponential law

• Exponential law: fβ(x)∝ exp(−βx)
• er,β(x):=Z(1+ βx

r )−r, β>0, r>1
• Z :=β(1− 1

r )
• mean µ:= 1

β(1− 2
r
)

• limr→∞ er,β(x)=Z exp(−βx)
• small r gives a power-law (long tail)

• The departure times for every trains can be modelled by
q-exponential distribution by some parameters β and r.
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Birmingham, all departures

r=3.8
β=0.33
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Coventry to Birmingham

r=9.0
β=0.21
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The discrete q−exponential model

• The discrete q−exponential model is more suited for the train
model since the departure times of trains are considered in
minutes

• Bins have length dt, typically one minute

• The values for each bin are calculated using the CDF of the
continuous model, i.e.

∫ a+dt
a er,β(x) dx where a is the value

of the bin

• The distribution is truncated; the departure delay cannot be
<0 or greater than some maximum
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The subproblems

1. find candidate stochastically short paths

2. for each candidate short path, find probability distribution
of arrival time

3. optimize over short paths
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Stochastically short paths on a graph

• Given a graph with RVs as edge weights and two nodes,
we could:

• minimize expected time to travel between the nodes
• find a route which maximizes the probability that it is

shortest
• find the route of shortest mean time, subject to some

condition on the variance
• . . .
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The problem formalized

Given:

• a weighted digraph g

• a timetable TT(n0, n1) for each arc (n0, n1)∈g
• a final arrival time Ta, and parameters τ>0, ε>0

To find:

• a route ρ and maximal departure time t such that
Prob[arrival after α+τ ]<ε
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Short paths in a weighted digraph
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Bath to Manchester, shortest mean time
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Bath to Manchester, second shortest mean time
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Transformation using a kernel

• The departure time of the passenger at the initial station is
modelled as a probability distribution

• We need to compute the probability distribution model for the
arrival time of the passenger at the next station

A0−→
K0

A1−→
K1

... −→
Kr−1

Ar

Here:

• Ai is the probability distribution of arrival time at station i

• Ki is the mapping between input and output distributions; we
will call it the kernel
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Aside: order statistics

Let Xi∼f , i=0, . . . , n−1 be iid. Define X(0) to be the minimum
Xi. We compute the pdf f(0) of X(0):

f(0)(x)dx=Prob[X(0)∈dx]

=Prob[one Xi∈dx, others >x]

=
∑
i

Prob[Xi∈dx,Xj
j 6=i
>x]

=
∑
i

Prob[Xi∈dx]Prob[Xj
j 6=i
>x]

f(0)(x)=
∑
i

f(x)
∏
j 6=i

(1−F (x))

=nf(x)(1−F (x))n−1
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The continuous time model

Let K(0|t)(x) be the probability density of departing at time x
given that the passenger arrives at time t.

K(0|t)(x)dx=[[x>t]]Prob[X(0|t)∈dx]

=[[x>t]]Prob[one Xi∈dx, others >x or 6t]

=[[x>t]]
∑
i

Prob[Xi∈dx,Xj
j 6=i
>x or 6t]

=[[x>t]]
∑
i

Prob[Xi∈dx]Prob[Xj
j 6=i
>x or 6t]

K(0|t)(x)=[[x>t]]
∑
i

fi(x)
∏
j 6=i

(1−Fj(x)+Fj(t))
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Integral transforms

An(x)=
∫ ∞
−∞

An−1(t)K(n−1|t)(x)dt, n=1, 2, ...

• Exact results (and agree with simulation)

• Integrals cannot be done analytically

• The amount of computer time needed to calculate Ai(x)
increases dramatically as i increases
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Continuous model simulation for catching one train
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The discrete time model

Let T be the set of all trains, t be the time the passenger arrives at
the station and x be the time the passenger departs.

K(0|t)(x)=[[x>t]]Prob[X(0|t)=x]

=[[x>t]]Prob[at least one Xi=x, others >x or 6t]

Let T be the set of trains departing after time t; then

K(0|t)(x)=[[x>t]]
∑
∅6=S⊆T

Prob[Xi
i∈S

=x, Xj
j /∈S

>x or 6t]

=[[x>t]]
∑
∅6=S⊆T

Prob[Xi
i∈S

=x]Prob[Xj
j /∈S

>x or 6t]

=[[x>t]]
∑
∅6=S⊆T

∏
i∈S

fi(x)
∏
j /∈S

(1−Fj(x)+Fj(t))
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Matrix multiplication of kernels

Let K0=(K(0|j)(i)), then

A1=K0A0

A2=K1A1=K1K0A0

...

An=Kn−1...K0A0

• Kernel and the distribution of arrival time can be considered
as matrix and vector

• Finding the distribution of the arrival time at the next station
is exactly the same as matrix multiplication
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Discrete model simulation for catching one train
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CDF for journey times from Ipswich to Manchester
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Finding the optimized departure time

• From the CDF we can calculate the time a passenger will
arrive the destination at a given probability for a fixed
departure time

• We would like to find the latest departure time such that the
passenger will arrive the destination on time at a probability
given by the passenger

• The optimized departure can be found by e.g. a bisection
method
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Bisection method

1. Obtain two departure times, x, y such that x<y and obtain
the arrival time tx, ty using the CDF of departure time x and
y respectively.

2. If the arrival time set by the passenger T is not between tx
and ty, then obtain a new x and y accordingly

3. Find the midpoint z of x and y

4. Calculate the CDF for departure time z and obtain the arrival
time tz

5. If tx6T6tz, set y :=z, otherwise set x:=z
6. Repeat the process until y−x is sufficiently small
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Arrival time for journey from Ipswich to Manchester with
different starting time
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Arrival time for journey from Ipswich to Manchester with
starting times as Gauss function
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Gray code method

• The Gray code method is a method of generating a list of
subsets such that adjacent subsets in the list differ only by a
single element

• Using the Gray code method, we can generate all the subsets
with the same cardinality

• Since after each iteration the new set generated differs by a
single element from the previous set, we can use the product
obtained from the previous iteration to calculate the next
product

• There is no need to multiply all the products again; we only
need to divide (element taken out from the previous set) and
multiply (element put in the new set) once and we will obtain
the next product
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Changing the length of each interval

• By default, the probabilities are calculated for every minute,
i.e. each interval is one minute.

• For a long journey, the amount of calculations will increase
significantly.

• The passengers may prefer to know the probability of arriving
at their destinations at some arbitrary interval.

Let t be the CPU time for the calculation of each journey and dt
be the length of each interval, then

• log t
log dt∼2 or t∼dt2
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CPU time needed with different interval length
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CDF for journey from Ipswich to Manchester with interval
length 1 when departure at time 0

250 300 350 400 450
Time (mins)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Ipswich to Manchester

IPS-PBO-LDS-MAN
IPS-NRW-MAN
IPS-CBG-PBO-LDS-MAN
IPS-NRW-PBO-DON-MAN
IPS-CBG-NUN-SOT-MAN



The optimization problem Short paths Transforms Optimizing departure time References Appendix

CDF for journey from Ipswich to Manchester with interval
length 2 when departure at time 0
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Calculating K(0|t)(x)

• The total numbers of non-empty subsets of T is 2m−1 where
m is the cardinality of T

• The number of operations is exponential

• Some or maybe most of the terms in the sum are zero

• The number of calculations can be reduced if we can find
these zero terms

• The number of operations can also be reduced by reducing
some degree of accuracy to the probability
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Finding the zero terms

Let S be any non-empty subset of T and

fS(x)=
∏
i∈S

fi(x) and gS(x, t)=
∏
j /∈S

gj(x, t)=
∏
j /∈S

(1−Fj(x)+Fj(t)).

Then
K(0|t)(x)=

∑
∅6=S⊆T

fS(x)gS(x, t).

• The product is zero if any factor in either fS(x) or gS(x, t) is
zero

• Since the order of multiplication and addition will not affect
the result, we can sort fi(x) in descending order and relabel
the indices
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• Find all the i such that fi(x) 6=0 and let the collection of
indices be the set U

• Find all the j∈U such that gj(x, t) 6=0 and let the collection
of indices be the set V

Then the set T can be partitioned into the following subsets, V ,
U−V and T−U and we can obtain the following table:

i∈ V U−V T−U
fi(x) >0 >0 =0
gi(x, t) >0 =0 >0



The optimization problem Short paths Transforms Optimizing departure time References Appendix

From the table, we will have the following observations:

• If ∃i∈T−U such that gi(x, t)=0, then either fS(x) or
gS(x, t) is zero for all S and hence K(0|t)(x)=0

• If fS(x)gS(x, t) 6=0, it immediately implies that U−V ⊆S
• Similarly, if fS(x)gS(x, t) 6=0, it immediately implies that
T−U⊆T−S

• Although the number of operation is still exponential, the
total number of subsets is reduced
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Controlling the error

• Without loss of generality, we can assume that
fS(x)gS(x, t) 6=0, ∀S

• First consider all possible subsets of T with cardinality one
and calculate the sum, i.e.

∑
|S|=1 f

S(x)gS(x, t)
• Calculate the upper bounds by consider the following:

upper bound =
remaining number of subsets ×
upper bound on products fS(x)gS(x, t), |S|>1

• If the upper bound is less than some satisfactory value,
i.e. ε (absolute error) or ε×sum (relative error), then the sum
is accepted

• Otherwise, consider all subsets with cardinality one and two
and repeat the process until the upper bound is less than ε
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Increasing the speed of matrix multiplication

• The number of rows (i) needed is not known in general

• While calculating dl+1, instead of calculating the whole matrix
Kl by using random number of rows, we will calculate the
first row of Kl and find the first element of dl+1

• Then we will calculate the second row of Kl, find the second
element of dl+1 and repeat the process.

• Since dl+1 is a probability distribution, therefore the sum of
all element in dl+1 is equal to 1

• Using this fact, we will calculate the sum after every step and
we will stop when the sum is equal or relatively close to 1

• This method not only solve the problem of not knowing the
number of rows required, it also uses less memory since no
large matrix is calculated and saves compution time, as only
required rows are calculated.
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