Analysis and modelling

of
train delay data

Mark Harris

Dissertation submitted for the MSc in Mathematics
with Modern Applications
Department of Mathematics, University of York, UK

Carried out at:
Complexity Research Group, BT, Martlesham
Supervisor: Keith Briggs

Academic supervisor: Jason Levesley

BTQ

August 24, 2006

Contents

1 Introduction

1.1 Background L oo o
1.2 The railway system: a brief history
1.3 Thedataset

2 Descriptive statistics

2.1 Cumulativedelays
22 Traintracking o oL
2.3 Distance-timeplots Lo Lo oL
24 Peakhours oo
2.5 Distributionofdelays.

3 Time series analysis
31 Timeseries v v i e e e e,
3.2 Autocorrelation

4 Modelling the data

41 Twopossiblemodels
411 Exponentialmodel
412 g-Exponentialmodel,
42 Fittingthemodels Lo o oL
421 Weighting
43 Whichmodelisbest?

5 Simulation

111

16
16
17

20
21
21
22
25
25
26

30

CONTENTS CONTENTS

6 Application 34
7 Concluding remarks 37
A More figures 38

B Program listings 43

iv

Abstract

The modelling of trains has many implications for all train users. Knowledge of
train delay distributions and accurate models would make the choice between
earlier or later trains much easier. A large amount of real-time data has been
collected. I suggest functions for modelling arrival and departure times. I then
fit the collected data with an appropriate function; parameters of these functions
are optimised by the Levenberg-Marquardt Algorithm. These functions can be
used to simulate future trains.

Acknowledgements

Many thanks must go to my supervisor Keith Briggs, who help and guidance
has been invaluable over the past 3 months. I also offer my gratitude to BT, the
company where my project has been based. All of the staff were friendly and it
provided a stimulating and relaxed atmosphere.

Chapter 1

Introduction

1.1 Background

For many years people have studied delays and their effects around various
types of networks; one particular network which has had much research done
about it, is road traffic. Richard Gibbens of the University of Cambridge has
produced a nice model of traffic speeds clockwise around the M25 [Cib], which
show an interesting wave of delay propagating against the direction of the traf-
fic. In comparison to other networks, little has been found out about the move-
ment of rail traffic. The main problem one faces is getting enough data to accu-
rately estimate the parameters for the models which they believe to be correct.
The main aim of this project is to statistically analyze and look for emerging
patterns in the dispersion of delays and create an effective stochastic model for
distribution of the delays.

1.2 The railway system: a brief history

The British railway system; initially built in the 19th century, was originally
owned and operated by four companies, Great Western Railways; the London,
Midland and Scottish Railways; the London and North Eastern Railways and
the Southern Railway, until the Second World War. The Transport Act in 1947
paved way for the nationalisation and British Rail came into existence shortly
afterwards. In the following period a vast amount of money was spent mod-

1

The data set Introduction

ernising the network. In the late nineties the network was gradually privatised
so that the tracks and stations (the infrastructure) are owned by Railtrack, and
the trains owned by a variety of different companies. After privatisation confi-
dence in the punctuality of the train networks has wained and now each train
operator has strict quota they have to fulfil: 95% of trains have to be delay 5
minutes or less. This statistic is met by the vast majority of the train companies;
however, this is not the end of the story. There is no information about the dis-
tribution of the delays bigger than 5 minutes. This statistic also doesn’t contain
much about smaller delays; if you had an important business meeting to attend
to immediately after your journey you would want to know the chances of that
train being on time, which from the statistic you can only say is less than 95%
of the time.

1.3 The data set

The data set was collected by Keith Briggs and Richard Clegg, over the course
of the last nine months. It consists of nearly all the train departures from 24
stations around the Railtrack network. A total of nearly one million delay times
have been collected, a figure that is increasing constantly as the data is obtained
from a python program written by Keith Briggs called get_train_data.py
which gets the data from www.livedepartureboards.co.uk which is updated by
Network Rail in real time.

The data collected is spread across a large number of .dat files, one per
station for every day. In every file the scheduled departure time, destination
station and delay time is stored for each departing train. The delay times are
stored in a discrete number of minutes late; however, from the website it is
unclear whether a delay of one minute is between a delay of 0 and 1 minutes or
between 1 and 2 minutes.

http://www.livedepartureboards.co.uk

The data set Introduction

Figure 1.1: A diagram showing the whole UK rail network

3

The data set Introduction
Birmingham 27/09/05 | Durham 03/07/06
Leicester 19/11/05 | Manchester 18/10/05
Canterbury East | 16/10/05 | Doncaster 23/09/05
Cambridge 01/10/05 | Edinburgh 16/11/05
Newecastle 25/10/05 | Nottingham 19/11/05
Canterbury West | 16/10/05 | Ely 19/11/05
Colchester 02/12/05 | Glasgow Central 03/07/06
Oxford 18/10/05 | Peterborough 27/09/05
Coventry 02/12/05 | Ipswich 27/09/05
Catterick 02/12/05 | London Kings Cross | 05/07/06
Sheffield 16/11/05 | York 23/09/05
Darlington 03/07/06 | Leeds 16/11/05

Table 1.1: A table of all stations to have data collected from and the first avail-

able date.

Chapter 2

Descriptive statistics

2.1 Cumulative delays

It is commonly thought that delays on a train line build up towards the end of a
line nearing the end of the day. This is quite plausible since near the end of the
day you have trains which have set off from far away locations, and covered a
great distance. Logically these trains should be more likely to be delayed than
a local train which has set of a short time ago from somewhere not to far away,
since you can argue that the long-distance train has more time to experience a
delay.

I concentrate on the Great North Eastern Railway (GNER) route from Glas-
gow Central to London Kings Cross, since that is one of the longest routes in the
UK and there is more stations we have collected information from than other
routes. We can see from the cumulative delays against distance (figure 2.1) that
as we get further away from Glasgow Central the total of the delays increases at
what appears at a glance to be some exponential rate. The average delays (also
tigure 2.1) causes a problem, because the expectation of a delay to any given

station ‘Edinburgh Newcastle York Doncaster Peterborough
distance (km) | 98 298 427 479 607

Table 2.1: Shows distance in kilometers along the track from Glasgow Central
for stations on the GNER route.

Cumulative delays Descriptive statistics

507 T T T T T T T T T T T T 5.0 T T T T T T
[45}
40 - .
7 |
> - 4.0+
g | é
> 30+ S
© L..
T | z 35
© T
2 | 3
& 20- 1 8%
2 I o)
3 | 8 25
10t -
[2.0+
i i i i i] N RN S R R

0 : 15— .
0O 100 200 300 400 500 600 700 0O 100 200 300 400 500 600 700
distance distance

Figure 2.1: Cumulative delays (left) and average delays (right) of trains leav-
ing stations along the southbound GNER route heading toward London Kings
Cross relative to their distance from Glasgow Central.

train heading to London Kings Cross decreases. For all of the stations up to
Doncaster all of the train have come from Glasgow, whereas when you reach
Doncaster you get trains coming from Leeds heading towards and then at Pet-
erborough even more trains from much closer than Glasgow Central which you
would expect to have a much lower delay and drag down the overall mean of
trains heading to London Kings Cross.

Removing these two stations where we cannot be sure of the origin of the
train leaves us with only three valid stations, which is not enough to establish
anything. What we need is some way of filtering out all of the train leaving
Doncaster and Peterborough not originating from Glasgow Central. Remov-
ing these trains should make the cumulative delay graph much more accurate;
however, how do you filter out trains based on where they have come from,
when the data contains no information about a train’s origin?

In section 2.2 is a detailed explanation of how my t raintracker.py works.
Figure 2.5 shows the average delay with increasing distance along the Edin-
burgh to London Kings Cross route. With the exception of Doncaster all of the
stations lie on a near perfect straight line. Most trains going along this line pass

Cumulative delays Descriptive statistics

average delay (mins)
(6]
T

I I S I S

0 ‘100 200 300 400 500 600 700

distance

Figure 2.2: A new average delay plot against distance of the data output of the
traintracker.py program.

straight through Doncaster as it the average is made up of only 700 trains, com-
pared to just over 2,800 trains at each of the other stations. Doncaster and York
are relatively closer together and the line between them has few other line cross-
ing it; it is also approximately in the middle so the train operator could have put
a lot of slack in the timetable, allowing the train to catch up lost time here. The
reasons above I feel are enough to justify this result, and not make it a statistical
anomaly.

Similar traits are seen in the limited other cases; however, we have data
collected from few stations on the same route apart from the GNER route. From
only a few points it is very difficult to draw any information out. Mixing the
routes is not an option either, since, the plot produced showed little.

Train tracking Descriptive statistics

2.2 Train tracking

This section is to explain how the t raintracker. py program works and what
it hopes to achieve. traintracker.py is a program written by myself in
python; it aims to track the progress of a train through the data set. Considering
the train line as a series of nodes n, n, ..., n; representing stations, with a station
mapping between each pair (n;, n;+1) called a;, which represents the train line be-
tween stations. Firstly the program uses the regular expressionmodulein
python to establish what times trains leave from n; towards the destination, n,.
Each station mapping, a; has an associated distance and minimum time. The
minimum time of a station mapping is the smallest timetabled [] time any
train takes to move between nodes. The algorithm processes each train individ-
ually applying the following steps:

1. Labels the last known station stop, y and time, t.

2. Moves on to the next station

3. Calculates the minimum time from current station, z, to station y by
rz—1

mintime = } 7~

a;

4. Searches station z for trains departing for station n; in time interval

[t + mintime, ¢ + amintime] where « is a constant greater than one.
5. If no trains are found, go to 2

6. Checks all trains found in 4 and removes those which have caught up
delay quickly based on the time taken.

7. Selects train with largest delay, go to 1, if no trains left, go to 2

This process is repeated until the last-but-one station, since we do not have a
departure time from the destination station.

When the algorithm can not narrow the number of trains to one or fewer it
chooses the train with has the largest delay. The reasoning behind this is due to
the assumption that expectation of delay and distance is somehow related by a
non-decreasing function. The program was created to track long distance trains

Distance-time plots Descriptive statistics

long the GNER route, generally the algorithm is good at narrowing down the
trains near the start of the sequence as over a longer distance the time table is fair
widely spread (there is a long time between trains), however as you get closer
to the destination, more local trains with the same destination are intermingled
between the trains we are interested in. These trains are assumed to have orig-
inated closer to the station than the trains we are interested in, and hence are
assumed to have a shorter delay. The program was tested over a series of days
and compared to the timetabled time found to be about 90% accurate []

2.3 Distance-time plots

An advantage of being able to link elements of the data is it allows use to visu-
alize what is happening to a number of trains on a distance-time plot. We can
look for patterns on specific days to show how large delays effect trains running
later on that day. The plots are only accurate when the train departs a station
(denoted by a vertical line). For all the times between stations the distance is as-
sumed to be linear, in other words, between stations the train is taken to travel
at a constant speed.

We can see trains ‘bunching’ together (Figure 2.4); this appears to be caused
by the delay of one train affecting the next. This could be because of a track
fault, if this fault causes one train to be delayed it should really affect the next
train, provided it has not been fixed in between the trains passing. In the main
across the country train tracks travel in pairs, one track for each direction; this
makes overtaking difficult. Assuming no overtaking takes place a delay bigger
than the gap between trains has to affect the next train. In figure 2.4 there are
a few trains which overtake; however, establishing where this can be difficult,
because we can not track the train’s movements between the stations.

The timetabled plots is displayed on the left of the observed plots as a ref-
erence to check traintracker.py has selected plausible times. The trains
plotted run nearly the length of the country and are all so called high-speed
trains; as a result they should not be timetabled to over take each other, if this
occurs it is more than likely an error produced by t raintracker.py.

Descriptive statistics

Distance-time plots

"900Z ATN[4,1 U0 ssox) s3ury]

uopuo 03 y3maqurpy I0j (IYS1I) paAIasqo pue (3J9]) parqerswn oy 3urmoys syderd awm-aoue)syq ¢ 93]

aoueKsIp
oom. _oom oov . .oom. .OON. _08
-] e
18
10T
cl
14"
a1

Lo e

(074

Aep Jo unoy

aoueKsIp

009

009

004 00€ 00¢ 00T

(qV (@) [e0)
— i
Aep Jo unoy

<t
i

(o]
—

.‘.,..,...H_MHHH........ -

10

Distance-time plots

Descriptive statistics

|
600

|
500

|
400
distance

300

|
200

5
100

Aep Jo inoy

|
600

\\\I\\
LI v

Vi o R
L T T |

|
500

|
400
distance

300

|
200

100

Aep Jo inoy

11

Figure 2.4: Distance-time graphs showing the timetabled (left) and observed (right) for Edinburgh to London

Kings Cross on 29" December 2005.

Peak hours Descriptive statistics

2.4 Peak hours

As with road traffic, many people use the trains to commute to work in a morn-
ing and back home at the end of the working day. During these time train
will have a shorter time interval between trains, have more carriages and trains
and platforms will be more congested. These peak-hour effects should be detri-
mental to the service; you hear countless commuters complaining about how
unreliable the train service is and yet the train companies fulfil their tight quo-
tas. This section will try to establish whether the commuters are correct and the
trains are performing badly at important times which is made up for at rela-
tively unimportant off-peak hours.

In the train timetable there are four different time periods. The four periods
are peak weekdays, off-peak weekdays, Saturday and Sunday. The timetable
is different for each one of them. Peak times are defined to be 8:00 to 8:59 and
17:00 to 17:59, since the majority of commuters will work 9-5.

Any peak variations caused by large quantities of commuters will only be
seen in big city stations, like for example Manchester and Birmingham. They
are unlikely to be seen in smaller town stations like Peterborough because pas-
senger will not commute to Peterborough en masse. Table 2.2 shows the means
and variances for each time period. The statistics for Manchester and Birm-
ingham are more reliable as they are big stations, where we have data for more
than 100,000 trains. Peterborough and Ipswich are much smaller stations, where
even though the data is collected over the same time-period there are much
fewer trains involved, around 40,000.

With the exception of Peterborough all stations show signs of performing
worse during the working week than they do during the weekend, and then
even worse at peak hours on a weekday. During the weekend we get a very
mixed bag with Saturday performing better than Sunday and some stations and
vice-verse at others. Out of the selected stations Manchester performs the best
(has the lower mean delay) and Peterborough consistently performs worst.

The variance seems pretty well correlated with the mean as through the table
the variance increases with the mean delay.

12

Distribution of delays

Descriptive statistics

Station Time period of train
Peak Off-peak | Saturday Sunday
MAN | 1.199 14.66 | 0.989 12.62 | 0.8499.28 | 0.921 11.97
BHM | 1.47921.94 | 1.239 21.94 | 0.969 20.42 | 0.791 20.25
IPS | 2.36452.83 | 1.87535.81 | 1.181 20.13 | 1.310 30.72
PBO |2.21157.92 | 2.672 68.85 | 2.104 48.75 | 3.090 75.77

Table 2.2: A table showing the mean delay and variance of trains traveling at
different times from Manchester, Birmingham, Ipswich and Peterborough.

2.5 Distribution of delays

In this section we shall look for appropriate functions with which to model the
distribution of the data. Looking at the data cumulatively is preferred to prob-
ability density as it produces a smoother plot. Let’s start by looking at some
cumulative frequency plots from various stations. Figure 2.5 shows a few cu-
mulative distributions with a log scale on the probability axis. The graphs show
the how the probability that any given random delay is greater or equal to an
arbitrary delay, x. The zero minute or more value is omitted as it is clearly 1.

The trend of the data is decreasing in a universal case, which is sensible.
As the probability decays at what seems to be a straight line on a logarithmic
scale, an exponential distribution could potentially model the data. The case
for modelling the data by this distribution is backed up by lots of other stations
which show similar features, albeit with differing gradients; figures for more
routes can be found in Appendix A.

In the previous section 2.4, there were signs that station’s performance var-
ied dependent on the time of travel. Now let us analyze the actual distributions
behind the means and variances of these stations at varying times.

Figure 2.6 shows cumulative plots of the probability of observing a delay
greater than = for Manchester and Birmingham. The Birmingham plot show an
interesting feature, because during peak hours the chance of suffering a delay
less than 20 minutes is more. The chance of a large delay is smaller than at other
time periods, however this data is less reliable. A 20 minute or more delay from

13

Distribution of delays Descriptive statistics

030 ! ! ! ! ! 10)555? ST

0.25 - »

0.20 - :
z 2 o N ,
8 o015 1 @ 102 b
o Qo £]
(@] <] [
s s

0.10 - »

0.05 - ;

OOO 1 Il 1 L 10—4 " 1 N L " L n Il L

0 20 40 60 80 100 120 0 20 40 60 80 10C
delay delay

Figure 2.5: Cumulative plots showing the probability of a delay being greater
than z minutes for Coventry to Birmingham (left) and Edinburgh (right, on a
log scale)

Birmingham is just a likely during any time period.

The Manchester plot does not have the same properties of the Birmingham
one, and is much simpler. The chance of any size of delay is greater during peak
hours from Manchester.

14

Distribution of delays Descriptive statistics

10055‘55‘555‘5 e FEREEEERE 10
10| 107
2z >
3 3
®© 10? T 107
e o
o o
10°% 103k
10—4 . 1 s 1 . 1 . 10—4 . i . i s I " I
0 20 40 60 80 0 20 40 60 80 10C
delay delay

Figure 2.6: Cumulative plots for Birmingham (left) and Manchester (right)
showing the difference in shape of the distribution during peak, , Sat-
urdays and Sundays.

15

Chapter 3

Time series analysis

3.1 Time series

Trains are scheduled to leave the station in a particular order; this order is
unique since each train is allocated its own distinct minute to depart (so that
passengers can easily identify trains). The actual order that trains leave how-
ever is not unique; in peak hours trains depart very frequently and since the
information is in discrete minutes, small delays can result in two trains depart-
ing during the same minute. These problems are in a big minority, later on in
the section become almost entirely redundant. Now let’s look at analyzing the
data as a discrete time series. For more information on time series analysis, there
nice book written by G.E.P Box and G.M. Jenkins [].

Definition 3.1 (Time Series). A time series is an ordered sequence of data, measured
typically at successive times or distances.

Generally for time series analysis the time difference between each element
of the series should be constant; however, trains have a gap during the night
where they do not run. In any given day there are not enough trains to give
any meaningful information. We get around this problem by doing what is also
done with analysis of the stock market (which also faces this problem as the
stock exchange is not trading all of the time) and stringing the end of one day
to the beginning of the next.

16

Autocorrelation Time series analysis

0.10

0,08 H-{

ACF

0.06}
0.04 F [N

0.02 b S PR o

0oLt i1
0O 20 40 60 8 100
lag

Figure 3.1: A graph showing the ACF with varying lag of all trains leaving
Peterborough.

3.2 Autocorrelation

The distance-time plots in section 2.3 shows quite clearly that delays to trains
earlier in the day effect the performance of later running trains. The autocorrela-
tion function is more commonly used for looking for looking for periodicity in
the data, however it is equally applicable to this case.

Definition 3.2 (Autocorrelation). For a discrete time series, X = { X1, Xo, X3, ...},
the autocorrelation function (ACF) is defined by:

El(X; — p) (X, — p)]

)
0—2

ACF(t,s) =

where E| | is the expectation operator. This function is well-defined for the vast majority
of functions however it is undefined for any time series with zero (a constant series) or
infinite variance, o>

The autocorrelation function is also a useful tool in determining whether
the data is produced randomly or is affected by something that happened pre-
viously. Peterborough has a mean time between trains of 6.8 minutes, which

17

Autocorrelation Time series analysis

indicates that it is possible that the delays could affect trains a small amount
several hours later (Figure 3.1). These results show a distinct decreasing trend;
however, the correlation is pretty weak and the trend is very noisy.
Peterborough as with most stations has several tracks along which trains
come into the station. It seems far-fetched to believe that some delay on the
line coming in from Cambridge could affect a train coming along the line to
Peterborough from London Kings Cross. As we have trains from different lines
all mingled together in our time series, this could possibly explain the sharp
fluctuation with lag in the ACFE. Peterborough is a station in a useful position
for analysis. Any train leaving Peterborough to northern stations Edinburgh,
Glasgow Central and Newcastle is always timetabled to arrive at Peterborough
from London Kings Cross. In Figure 3.2 there is a much stronger correlation co-
efficient than before, which decays down with a much shorter lag than in Figure
3.1. Looking at the average time between trains leaving from Peterborough to
the north (Glasgow Central, Edinburgh and Newcastle) explains this, since the
average time between trains is much bigger, meaning that a delay can cause an
effect in the network for a few hours after it occurs. This effect diminishes with
each passing train till about 8 trains later, where virtually no effect is seen.

18

Autocorrelation Time series analysis

1.0 ‘ T ‘ T " T " T

0.8 F\ o

T
1

0.6

LL
Q & L BN 4
< ‘ ‘ ‘ ‘ 20'1:::3::::3,,::‘::::‘::

0.4 [N SRS SIS R SIS

| oot I B N

0.0 : : ‘
0 2 4 6 8 0 2 4 6 8
lag lag

Figure 3.2: A graph showing ACF with lag for train leaving Peterborough for
the north on a normal scale (left) and log scale (right)

19

Chapter 4

Modelling the data

To be able to model the data efficiently we need to establish what it is that we
want the model to do for us. The aim of the model to create a framework to
produce stochastic model of the www.thetrainline.co.uk, where a user inputs
their chosen departure and destination station, for a train in the future. The user
is returned a timetabled time which the train arrives at the destination station.

We have departure times for 20 stations in the UK, therefore with this limited
number of stations it would be impractical make predictions based on stations
we know nothing about, hence producing something asbroad as thetrainline.
co.uk would be silly.

We showed briefly in Chapter 3 that any dependencies on previous trains
decrease with increased time, any correlation between trains days apart is neg-
ligible if anything. For the purpose of modelling we will assume that the user is
looking up trains for a few days ahead of any information possessed, therefore
the trains are not affected by any previous trains. This assumption is key as the
model we shall look at is memoryless.

For the model to work we need any arbitrary function that we choose to
accurately fit a variety of data. We need to be careful selecting which trains we
include in the modelling process, to get an accurate output.

20

http://www.thetrainline.co.uk
thetrainline.co.uk
thetrainline.co.uk

Two possible models Modelling the data

4.1 Two possible models

As discussed in section 2.5, we are looking for suitable functions to fit the de-
lays cumulative distributions. A function which accurately fits the cumulative
distribution should accurately model the data.

4.1.1 Exponential model

An exponential distribution is a continuous distribution. All time data is dis-
crete to some degree so modelling with a continuous distribution is not a prob-
lem.

Definition 4.1. The cumulative distribution function of an exponential distribution is
defined by:
l—eP >0

0, otherwise,

F(x;8) = {
for some rate parameter 3 > 0.

The standard cumulative density function represents P(x < y) for some
z,y € R where P() denotes the probability operator. The ‘cumulative’ graphs in
this document show P(z > y). The relationship between the two is:

Plx >y)=1—-Px <y).

The exponential function, e~ is smooth around = = 1; however, our data
jumps between 0 and 1 minute delays. What could be causing this effect? Here
is a possible theory to why this occurs. Trains often wait in stations; many trains
going through a station have an arrival time and a departure time. A train will
not leave the station before its departure time, so in fact the zero minute delay
covers all trains which arrive on the departure time or before.

We don’t have any information on arrival data so we can not shift the delay
axis and include any ‘negative’ delays. As a result of this for the purpose of
fitting the exponential the zero delay value is ignored and we introduce another
parameter to the model, which is an intercept. With the intercept parameter and
the change from the cumulative density function, the function we are trying fit

21

Two possible models Modelling the data

the data with becomes:

1—efr=a 250

0, otherwise,

F(ﬂf;ﬁ,a)Z{

This produces a valid cumulative density function for o, 5 > 0. F(X) is
non-decreasing since:

F'(X =) = Be P> > 0, since § > 0.
F(X) € 0,1] for all X € {delays} and the limit as = — oo of F'(X) = 1 since:

lim F(X =) = lim 1 — e P

r—00 Tr—00

=1—e%lime ™ =1, sincea, 3 > 0.

Tr—00

4.1.2 g-Exponential model

The g-exponential is not a very widely known function. It a part of a whole
family of g-analogs of widely known functions like, for example, the factorial
and the binomial coefficient. There are several papers on this subject, which
give helpful insight to why many of the properties possessed by functions are
retained by their ¢g-analogs [F'W] [1.

Definition 4.2 (g-analog). For a given function, f(x), a g-analog, denoted f(z;q) or
fq(x) of the function is any parametrization, q, which returns the original function as
q tends to one, more rigorously:

lim f,(z) = f(z), V.

q—1-

We shall be looking at the properties possessed by a g-analog of the expo-
nential function. The exponential function is defined by:

exp(z) = lim (1 + %) , forxz e R.

n—-+4o0o

Definition 4.3 (¢-exponential). The g-exponential is defined as:

eq() = (1+ (1 - q)x) ™3

22

Two possible models Modelling the data

Theorem 4.1. The g-exponential is a q-analog of the exponential function. In other
words: lim,_,; e,(z) = exp(z).

Proof. Starting with the left-hand side:

1

lime,(z) = lim(1 + (1 — ¢)x)™«

q—1 q—1
— lim <1+f>
n—-+oo n
= expl(a)

O

In the majority of books the g-exponential is defined by a different formula
[11]. This is also a perfectly valid ¢g-analog obtained from parametrize
the infinite power series expansion of the exponential. The two g-exponential
definitions are distinct and seems to be no function mapping between them;
they are only equal to each other in the limit as ¢ — 1.

Let us look at how the choice of parameter ¢, effects the g-exponential func-
tion relative to the exponential function. Plots of the g-exponential function are
shown in figure 4.1 for g between 0.5 and 2. The ¢ parameter in g-exponential
functions allow the control of the curvature on a logarithmic plot much like
that observed in the distribution delays of train departing some of the stations.
We may also add a and 3 parameters in to control the y intercept and gradient
respectively.

As in the exponential model, the g-exponential model will be fit with a in-
tercept parameter, on the cumulative data without the zero or greater delay
probability. The g-exponential function we try to fit the data with has three
parameters is defined by:

1—(1+(q—1)(Br+a))Te, z>0
0, otherwise,

F(x;a,ﬁ,Q)={

This is not a valid cumulative density function for all values of the parame-
ters. F(x) needs to be in [0,1] for all values = €{delays} = [0, c0). This is equiv-
alent to e,(—fx — a) € [0, 1]. This is shown by splitting the problem in to two
cases, one where ¢ > 1 and the other where ¢ > 1. Suppose ¢ > 1, o, 3 > 0,
then:

eg(—2) = [1+ (¢ — 1)(fz +)] ™,

23

Two possible models Modelling the data

0.5 1.0 15 20

Figure 4.1: A plot of e,(—z) with parameter values, ¢ =0.5,0.75, <1, 1.5 and 2

since everything is positive we have a number greater than 1 to a negative
power. Taking the reciprocal gives a number belonging to [0, 1] to a positive
power, which has to belong to [0, 1]. In the case where ¢ < 1 we get a number
less than one to a fractional power. This is good, however there is no lower
bound to this number as + — oo as a result this can become negative. A neg-
ative number to a fractional power is a tricky concept and should be avoided.
Fora,5 > 0and ¢ > 1, F(x) € [0,1] for all z € {delays}. Let us now show that
in the limit as x tend to infinity, F(x) for the specified parameter values, tends
to 1. This is equivalent to saying lim, .. e,(—fz — o) — 0. For large z, the =
dominates the inside of the power bracket. Defining 1/(1—¢) as —y wherey > 0
since q > 1 gives:

lim e,(—fx —a) = lim 277

1 Y
= lim (—)
T—00 €T

=0.

This fact is proof that the lim, .. F'(z) = 1 and therefore F'(x) is a valid cumu-

24

Fitting the models Modelling the data

lative density function.

4.2 Fitting the models

The models are fitted using the program called n1fit_g_exp and nl_fit_exp
for their respective models. Both programs use the same implementation of
an Levenberg-Marquardt algorithm []. Given an initial values for a set
of parameters an iterative procedure is applied to estimate the parameters by
minimising the mean square error (MSE). From arbitrary initial conditions the
program can only find a local minimum of the MSE; this is due to the non-linear
nature of this the function we a trying to fit. Computationally we can get around
this problem by starting the program off from various initial parameters.

Not all of the data contains the same amount of information. The informa-
tion of the trains with a small delay is greater than that for a big delay. As
the actual probability of an event occurring decreases, the amount of observa-
tions needed to obtain a valid estimate increases quickly. For example if the
actual chance of a train being delayed more than 120 minutes is 1 in 1000 we re-
ally need millions of observations to accurately predict such a probability. This
fact also means that the variance for a set number of observations is greater for
an event which has a smaller probability; therefore, the fitted curve should be
weighted towards the lower delay values.

4.2.1 Weighting

Weighting allows a statistician to assign a weight, w;, to each point. For n points,
these weights the minimum MSE towards the points with greater weighting.
Point with greater weight are more significant when fitting an optimal curve.
One appropriate assignment of weights is make the weight of an element of the
data inversely proportional to its variance. The variance of the data is unknown;
however, it should be inversely proportional to n;, where n; is the number of
trains which make the ith point. The probability is proportional to n;. The
weights for each point should be proportional to P(delay > z;); these weights
do not have to sum to one, so need to be normalised. The normalised weights

25

Which model is best? Modelling the data

are:

These weights are the standard way weighting such a problem, however the
fitting program uses a simpler method. The fitting program uses a constant
multiple of 1/z as the weight for each point. Figure 4.2 shows plots of the best
tits for a few data sets; more of these can be found in Appendix A. In the major-
ity of cases the g-exponential seems to be the better fit. The distributions vary
fairly drastically between stations, some of which produce particularly straight
plots on an logarithmic scale; for these data set the optimal g-exponential is very
close to one. For computational purposes when ¢ is close to 1 a series expansion
is used to avoid raising to a power which is shooting off to infinity.

Data sets where the optimal g-exponential ¢ value is very close to 1, then
you would expect the simpler exponential model to be preferred. A common
trait in the fitting of the exponential curves are that for large delays the curve is
consistently under the observed data, this would result in any model using this
distribution to under-predict large delays. The g-exponential curves trend to do
the opposite; for the big delays the fitted curve trend to leave the observed data,
and has a tendency to over-predict large delays. These are not major problems
as these traits are at very small probabilities, and can only be observed on a
logarithmic plot.

4.3 Which model is best?

The test statistic used is obtained from the n1fit program [GS]], it is defined

by:
n 2
0; — €;
x2=2[o } :

=1

where n is the number of points, o; and e; are obtained and estimated values
for the ith point and w; are the weights. This is then divided by the number of
degrees of freedom n — p, where p is the number of parameters in the model.
This is preferred to the chi-squared goodness-of-fittest because it includes infor-
mation about weights. We are not trying to justify why the model works, just

26

Which model is best?

Modelling the data

0.35

0.30

0.25

0.20

probability

0.15

0.10

0.05

0.00

0.35

0.30

0.25

0.20

0.15

probability

0.10

0.05

0.00

probability

60

probability

60

10]:51

(T T - —
o S SIS NN Wi e S —

10°

60

10

10+

(0 S O WO SSTTSTN NUSSSIINS TSSO S

(0 SUSSSRPSSE HSSPSSNS SSOOOS NSSIONE Yot ts SO

50

60

Figure 4.2: Exponential best fit (Top) and g-exponential best fit (Bottom) for

trains leaving Manchester for Manchester Airport.

27

Which model is best? Modelling the data

selecting it because it appear to fit the data well. This test allows us to choose
relatively between the two proposed models.

The exponential model is nested within the g-exponential because it is the
limiting case of the g-exponential where ¢ = 1. To decide which is distribution
is better, nesting of models needs to be considered. Assuming that we have the
best g-exponential fit this has to have a significantly smaller y? than the best
exponential fit. What needs to be established, is whether the g-exponential is
a significantly better fit; should this fail then the exponential distribution is the
favored model.

Table 4.1 shows a list of routes with their y?/(degrees of freedom) values for
both the exponential and g-exponential models of best fit. Plots of these fits can
be found in Appendix A. In the vast majority of cases the g-exponential is clearly
a much better model. There are a few values for the exponential fit which are
very marginally smaller than the g-exponential, this is not because the model
has a lower sum of square errors, which would mean there is something wrong
with the fitting. In these cases, the ¢ parameter in the g-exponential is very close
to 1, and since the exponential model has one more degree of freedom, it is this
that causes the smaller test statistic.

Cases where the exponential performs anywhere near the g-exponential is
limited. There are quite a few routes where the test statistic for the exponential
is massively above the relative g-exponential therefore, we will choose the ¢-
exponential as the better of models for this data.

28

Which model is best? Modelling the data

route g-exponential exponential
Manchester to Manchester Airport 2.3 23.1
Coventry to Birmingham 7.1 32.3
Coventry to Edinburgh 81.8 81.7
Coventry to Liverpool Lime Street 4.2 4.1
York to Edinburgh 14.9 126.4
York to Scarborough 52 7.5
York to London Kings Cross 13.2 2414
Newrcastle to London Kings Cross 5.5 94.4
Peterborough to Edinburgh 9.1 98.7
Doncaster to Edinburgh 11.2 248.6

Table 4.1: A table showing the x?/(degrees of freedom) values for the exponen-
tial and g-exponential best fits for given routes.

29

Chapter 5
Simulation

For simulation purposes, the cumulative density function has to be manipu-
lated in to a probability density function. This process differs slightly between
continuous time and discrete time. As the test data is in discrete minutes, the
simulation should also be in discrete form. For discrete time, converting the
cumulative density function to a probability density function is done using the
following formula:

fX=x)=FX=z+1)—- F(X =ux).

This also conveniently gets around the lack of continuity of the cumulative den-
sity function at = 0, which would have been a problem in continuous time.
For f(X) to be a valid probability density function the probabilities should sum
to 1 and be in the range [0,1] for all z:

Y X =2)=fX=0)+f(X =D+ f(X=2)+--+ f(X =n),

)4+ F(X=n—-1)—F(X=n-1)+FX =n),
)+ F(X =n),

Y f(X =)= lim f(X =n),

= —F(X =0)+ lim F(X =n),

n—oo

=04+1=1.

30

Simulation

Since F'(X = x) isin [0, 1] for all z, and F(X) is non-decreasing, f(X = x) =
F(X =241)— F(X =0)isin [0, 1]. f(X) is a valid probability density function.

The expectation and variance of the model can be obtained from the proba-
bility density function via the following formulas:

E(X") =) a"x f(X =),
var(X) = E(X?) — (E(X))*.

These infinite sums need to converge. For the ¢g-exponential this is not guaran-
teed for all the parameters that produce a valid probability density function. For
computational purposes an infinite sum is not ideal, because the random num-
ber generator would need to produce a random number to a infinite number
of decimal places. An arbitrarily big delay is not feasible, as the train company
would cancel any train with a huge delay. As a result of these factors, the tail of
the distribution should be cut off at some appropriate delay size. This should be
determined by the largest delay seen in the data set. The get _train_data.py
program is not perfect, as very occasionally it will produce a delay of greater
than 1000, which is impossible since a train with such a delay would arrive af-
ter the data is written; as a result of this the distribution is cut at the greatest
delay less than 1000.

For testing purposes the data should be split into training data and test-
ing data. As the Manchester to Manchester Airport route has the most trains,
this is a sensible example to choose. The training data consists of all of the
trains departing Manchester for Manchester Airport from December 2005 to the
start of July 2006 and will be used to select the optimal parameters. Figure 5.1
shows fitted curve. The fitted parameter values are passed to the simulate.py
program, which calculates the probability density function and simulates a set
number of iterations. Figure 5.2 is a comparison of the test data and a simula-
tion of the same number of trains. The test data is actual data of trains leaving
Manchester for Manchester Airport from July 2006 to August 2006. The two
plots do not look too dissimilar; the real data has quite a number of big de-
lays towards the end of the data, this indicate that the system went through a
bad patch, which can not be predicted by our model since each element of the
prediction is independent. The means and variances are pretty well estimated:

31

Simulation

10

102}

probability

103}

104 PSRN RN DR TR DR

Figure 5.1: A graph showing the estimated cumulative distribution of trains
leaving Manchester for Manchester Airport.

‘ mean variance
real 1.804 19.503
simulated | 1.712 20.415

The randomness of the random number generator used can be checked here
since the distribution used by the simulator has an expectation. The maximum
single delay was set at 180 minutes, therefore:

180

E(delay) = > xf(x) = 1.675

=0

E(2?) = 22.521, hence the calculated variance should be:
Var(z) = E(z%) — (E(z))* = 19.715.

The expected mean and variance are very close to that of the simulation; this
suggest that the random number generator used is unbiased and the test data
set is large enough to give accurate results.

32

Simulation

(O e e B A B s (O e e) LB e
60+ 60 - R
50+ 50+ B

> 40+ > 40+ B

3 _ | g _ | |
30 30+ R
20 20 R
10 10 ||' m
. | \ il Y \

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
number of train number of train

Figure 5.2: Fractal plots showing the delay of train with relation to the order in
which they occurred for actual data (left) and simulated (right)

An interesting observation in the real data of figure 5.2 is two block of de-
lays in the bottom right of the plot. Looking at the data series which produces
the plot there is a sequence of 5,10 and 15 minute delays forming a regular pat-
tern one after the other. This is very suspicious and probably not accurate. This
shows that the data collection method does occasionally go wrong. For pur-
poses of computing the averages, these noisy points were removed.

33

Chapter 6
Application

Now that we can accurately model various distributions of train data of trains
departing stations around the country, we need some way of making this data
useful. Suppose we wanted to leave London Kings Cross and travel north to
Peterborough. The information we need is is the eventual destination of the
train that is planned for travel, in this case Edinburgh. We then obtain the distri-
bution of past trains leaving Peterborough for Edinburgh, with the assumption
that the delay of the departure time is the same as the arrival time.

This works well for this case, however if you are traveling the other way
and want to leave York for Peterborough. The destination of the train is London
Kings Cross but lots of local trains travel from Peterboroughto London Kings
Cross. As discussed in Chapter 2, these local trains interfere with the mean,
and hence distribution of delays. We want to narrow down as much as possible
trains similar to the one intended for travel.

Figure 6.1 shows the distributions of trains leaving their respective stations
heading for London Kings Cross originating from Glasgow Central. This data
can be used to give information on the chance of arriving at one of the stations
from any of the proceeding stations. We are not dealing with conditional prob-
abilities, say what the chance of delay going from York to Peterborough given
our journey begins on time from York. The distance of our journey is not im-
portant, however the distance of trains journey to our destination station is.

The means of the distributions get steadily bigger, with the exception of
Doncaster. This is in keeping with the mean delay result in chapter 2. Table 6.1

34

Application

0.1F]

001t

Figure 6.1: Cumulative plots of the estimated distribution for Edinburgh,
, York, Doncaster and Peterborough.

shows the parameter estimates with their standard errors. Edinburgh is by far
the worst fit since the standard error values are significantly higher for all of the
parameters than in the other stations.

This limits the choices of station considerably, since there is only the GNER
line where we have collected data from enough stations to make train tracking
possible. For travel to stations not on the GNER line, the non-filtered data is the
best estimate we can do. There is no reason why traintracker.py should
not work on other lines since the line is set by list of stations and minimum
times. Extending the number of stations the data is collected from would allow
expansion and more accurate results to other lines, where the destination is near
the end of the line.

35

Application

q o g
Edinburgh | 1.53+£0.03 1.1 £0.2 0.70£0.1
Newcastle | 1.4240.01 0.81+0.03 0.23+0.007
York 1.37+0.01 0.55+0.02 0.1640.004
Doncaster | 1.53+0.02 0.26+0.07 0.2640.01
Peterborough | 1.38+£0.01 0.274+0.03 0.14+0.004

Table 6.1: A table showing the parameter values with their standard errors for

the plots in figure 6.1

36

Chapter 7
Concluding remarks

We began with the intention of analysis and modelling the performance of trains
on the Railtrack network. We showed that while the majority of the trains reach
the performance target of 95% being less than 5 minutes late, the actual perfor-
mance of different stations and route varies quite considerably.

The performance of long distance trains is also masked by the regular short
distance trains, Peterborough meets the 95% statistic. However, my program
traintracker.py indicated the average of train arriving from Edinburgh to
be substantially over 5 minutes. We have shown that the effects of one delayed
train can last up to a period of several hours, but these effects weaken over the
course of a few days. The simulation of the future trains showed gave further
weight to the g-exponential accurately modelling the data and produced a very
similar plot to the actual data, albeit with the autocorrelation property of the
data lost.

This project leaves various paths for future research. There were a few lim-
itations already discussed, many the lack of stations with a substantial amount
of available data. This is an obvious area of improvement, which would pos-
sibly lead onto the analysis of routes involving multiple trains and the change
between them.

Appendix A

More figures

This appendix is purely plots. There is another distance-time plot for 13th
February 2006, and plots of the observed cumulative density, exponential fit
and g-exponential fit of routes used in the comparison of the exponential model
and g-exponential model. The routes are labeled in the figures and are the same
for each figure.

38

More figures

600

500

400

distance

300

200

100

600

500

400

distance

300

200

Aep Jo unoy

39

100

Figure A.1: A distance-time plot of timetabled (left) and observed (right) trains from Glasgow Central to London

Kings Cross on the 13th February 2006.

More figures

100

N
5
N

—

N 10t} 1
AN
01p N E
z 107} iz . z .
2 AN 3 N g 107} s :
° - 8 T~ ° o
5 10 \ 4 5 ~ = \
~~ 001}F ~ 1
- ~ ~
~ . 3| ~_
104] \ 1 ~ 10° -
10°s I I I I 0.001 I I . 10 I I I I
0 20 40 60 80 10C 0 10 20 30 40 0 20 40 60 80 10C
delay delay delay
100 . 10° . 10 T T
\ I\ .
1\ m L] = El
101\ 10° \
\ \
> \. > N 2
% 107} \\\\ 4 g 102} " E % 102} N B
s o = A g \
— \ ! N
10%F R 102 AN 4 10° — E
o N N
104 L 10’4 L - 10>A L L
0 50 100 150 20C 0 50 100 150 20C 0 10 20 30 40 50 60 70
delay delay delay
100 : 10 : 10 T
\\ \\
100E\ , 107\ J 10tk \ 7
N \ \
z \ z \ z ~
2 10 — FRTT S 2 102 o
E=} 3 — ER-] 3 N ER-1 3 o E
[} — [\ [~—
S ~— s N s —
~\ L \
10°} N 109} ™~ E 10°} |
104 . . . 104 . . . 10+
0 50 100 150 20C 0 50 100 150 20C 0 20 40 60 80 10C
delay delay delay

Figure A.2: Cumulative distribution plots for trains leaving (Top) Coventry to
Birmingham, Liverpool Lime Street and Edinburgh(left to right). (Middle York
to Edinburgh, London Kings Cross and Scarborough (left to right). (Bottom)
Doncaster to Edinburgh, Newcastle to London Kings Cross and Peterborough
to Edinburgh(left to right).

40

More figures

030 030 06
\
\
025L) 4 azsk o\ 4 050 1
| \ \
‘ \ \
| \ \
0.20f | g 020F _ i 04r \\ i
z || z \ £ \
8 oas\ | 1 8 oas} \ 1 go3k b
2 \ 8 \ [< \
=% \ 5 8
010} | 4 0.10- \ 4 0.21 \ B
‘\\ N o
L i L ~ i 01- N 4
0.05 \ 0.05 ~__ -
0.00 e T 0.00 ‘ ‘ ‘ ool T
0 10 20 30 40 50 0 5 10 15 20 0 5 10 15 20 25 30 35
delay delay delay
035 05 L 025
03014 |
04r 1 o2l b
0.251 | g
\ > 03l] L]
Z o20f | 1 £ 2 015r |
g \ 2 3
£ 15l \\ < !
g 015\ 1 502\ 1 850w \ }
\ \
0.10- \ i \ \
\ 0.1 B 0.05 .]
0.05} N i N
S = -
0.00 ‘ w P ———— 00 P v 0,00 ‘ o
0 10 20 30 40 50 60 0 10 20 30 40 50 60 70 0 10 20 30 40 50
delay delay delay
0.4 — 030 05 :
| 0251 1 o4l]
03 | 1
\ 0201 1 \
z > z 03] 1
= £ = \
3 020\ 1 8 oisp | 1 8
s 8 \ s \
=% \ 5 \ 5 02 \\ g
\ 0.10} \\ 1 \
0.1F N] \ \
01l 1
\\ 005} \ 1 ~
— \\,,% 1
0.0 I L L L L L L 0.00 I I M —— 0.0 | L L
0 5 10 15 20 25 30 35 40 0 10 20 3 4 50 60 0 5 10 15 20
delay delay delay

Figure A.3: Plots showing the fitting of the exponential function to the cumula-
tive distribution of different routes (orientation as in figure A.2).

41

More figures

probability

probability

probability

Figure A .4:

0.30 030 06
‘\
\ |
0251 1 oz 05|
‘
0.20F B 020 041 1
\ >
z z
015} 1 8o \ g o3 b
8 b < \
& AN &
0.10F |\ , 0.10 \\\ 0.2F b
\ N RN
005\ 1 005 N 01f N i
~__ _ —
0.00 \‘7777 —— L 0.00 L L Il Il Il 00 L L L L L -
0 10 20 30 4 50 0 5 10 15 20 25 0 10 15 20 25 30 35
delay delay delay
035 05 ‘ 025
\ \ \
030} , | |
\ 04| 0.20] |]
025} | 1 \
> 03} L]
0200 4 £ 2 0B
3 g
015 2 3
0N 1 802 5 010+ i
\
010 AN E \
0.1+ 0.05- \]
0.05} \\ B AN .
~_ ~ R N -
0.00 | | | N — 0.0 I I I ——— 0.00 . T
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 4 50
delay delay delay
05 ‘ 030 05 ‘ ‘
04 41 o0x 04 1
020
0.3F 1 = 2 03 4
g o015 3 \
8 °© \
02f 18 502 \]
\ 0.10
\ \ \
\ \
01r b 1 N\ 01r \]
. 005 . ~—
- 7 —_ -
0.0 I I - 0.00 . . P ——— 0.0 . I I I]
0 10 20 30 40 0 10 2 30 40 50 0 5 10 15 20 25
delay delay delay

Plots showing the fitting of the ¢g-exponential function to the cumu-

lative distribution of different routes (orientation as in figure A.2).

42

Appendix B
Program listings

I wrote several programs for the is project. Here are streamlined versions of a
few of the more important ones.

#! Jusr/bin/python

#to make distance-time plots like in Chapter 2, use the linux command
#./traintracker.py —station=EDB —destination=KGX | graph -Tps -C
#the path variable needs to be changed for the program to locate

#the data/ directory.

import re

from time import *

from commands import getoutput

from sys import stderr,exit,argv 10
import getopt

from CRS_dict import station2CRS,CRS2station # from CRS_codes-1.0/CRS _dict.py
from line_dict import line2stations

def findstarts(station,destination):

lfn=path+’ /data/’ +station+’ _’ +date+’ .dat’

try:
f=open(lfn,” r")

except: 20
print>>stderr, 'No dat file’
return None

info=re.compile(’ (?P<time>\d\d:\d\d) \t’+CRS2station[destination])

page=f.read()

43

Program listings

return info.finditer(page)

def traintracker(start_time,start_station,destination):
time=str2sec(start_time)
times=[]
for i,station in enumerate(stations): 30
if i==0:
r=searchstation(station,sec2str(time),0,destination)
if r: times.append(r[0])
time+=60*"mintimes[i]
else:
trains=searchstation(station,sec2str(time),variation,destination)
trains=choosetrain(trains,times[—1])
if trains:
times.append(trains)
time=60"mintimes[i]+str2sec(times[—1][1]) 40
else:
time+=60"mintimes[i]—300

return times

def searchstation(station,time,span,destination):#span in minute
first=1
start_time=str2sec(time)
end_time=start_time+60*(span+1)
time=str2sec(time)
info=re.compile(’ (?P<time>\d\d:\d\d) \t’+CRS2station[destination]) 50
list=[]
try:
f=open(path+’ /data/’ +station+’ _’ +date+’ .dat’)
except:
if first:
print>>stderr, "Couldn’t open file for ", CRS2station[station]
first=0
return list
for line in f:
x=info.match(line) 60
if x:
if str2sec(x.group(’ time’)) in range(int(start_time),int(end_time),60):
fields=line[:—1].split(" \t")
list.append((station,fields[0],fields[—1]))
time=str2sec(x.group(’ t ime"))

44

Program listings

elif str2sec(x.group(’ time’))>end_time:
break
return list

def choosetrain(trains,last_stop): 70
if len(trains)==0: return None
if last_stop==None:
print>>stderr, 'No last stop’
exit(3)
last=str2sec(last_stop[1])
for i in range(len(trains)—1,—1,—1):
timetaken=(str2sec(trains[i][1])—last)/60
time,stps=find_time(last_stop[0],trains[i][0])
test=(timetaken—time)/time
testdelay=timetaken-+int(trains[i][2]) —int(last_stop[2]) 80
if timetaken/time>1.35 or testdelay<(time*0.9—5"stps):
del trains]i]
j.delay=0,0
if int(last_stop[—1])==—1:
return None
for itrain in enumerate(trains): #biggest delay is always selected
if train[—1]>delay:
delay=train[—1]
j=i
try: 90
return trainsfj]
except:
i=1

def printstd(times):
dist=0
for stop in times:
if type==0: hour=(str2sec(stop[—2])+60*float(stop[—1])—str2sec(’ 00: 00"))/3600
else: hour=(str2sec(stop[—2])—str2sec(’ 00: 00"))/3600
distance=find_dist(stop[0]) 100
print ' $i\t%.1f’ %(distance,hour)
print

def printcontour(times,number):

dist=0

for stop in times:

45

Program listings

time=(str2sec(stop[1])—str2sec(’ 00: 00"))/3600
delay=int(stop[—1])

distance=find_dist(stop[0])

print ' $i\t%.2£\t%1i’ %(distance,time,delay)

def fileprint(times,start_time):
savepath=path+’ /testdata/’ +date+’ .dat’
f=open(savepath,’a’)
for t in times:
f.write(” $s\t%s\t%s\n’ %(t[0],t[1],t[2]))
f.write(” \n\n")

def find_dist(stop):
j=line2stations[line][0].index(stop)
return sum(line2stations([line][1][0:j])

def find_time(start,stop):
i=stations.index(start)
j=stations.index(stop)
return sum(mintimes[i;j]),j—i

def str2sec(time): #Needs global variable date

return mktime(strptime(date+’ _’ +time,” $Y_%b_%d_%H: $M’))

def sec2str(secs):
return strftime(’ $H: %M’ localtime(secs))

def addday(date,fmt="%Y_%b_%d’):
t=strptime(date,fmt)
t=localtime(mktime(t)+(60*60*24))
return strftime(fmt,t)

def stations_select(line,start,stop):

x=line2stations([line]

stations=x[0]

distances=x[1]

mintimes=x[2]

try:
i,j=stations.index(start),stations.index(stop)
stations=stations[izj+1]
distances=distances][i:j]

46

110

120

130

140

Program listings

distances.append(0)

mintimes=mintimes][i;j]

mintimes.append(0) 150
except:

print>>stderr, ' Could not find the stations on the line’

exit(3)
return stations,distances,mintimes

def run(station_code,dest_code):
times=findstarts(station_code,dest_code)
try:
for i,y in enumerate(times):
time=y.group(’ time"’) 160
if type==0 or type==3: printstd(traintracker(time,station_code,dest_code))
if type==1: printcontour(traintracker(time,station_code,dest_code),i);
if type==2: fileprint(traintracker(time,station_code,dest_code),time)
print
except:
print>>stderr,” No trains from ’,CRS2station[station_code],” to ’,
CRS2station[dest_code],” on ’,date

#Global Info and defautls

path=" /home/mark/train_data-1.0’ 170
date="2005_Dec_29’

line=’ gner’

type=0

variation=25

try:
opts,args=getopt.getopt(argv[1:],” hS:1:D:d:t:",
["help’,”station=',’line=’,"destination=’,"date='," type="])

except getopt.GetoptError:
print>>stderr, "Need opts." 180
exit(1)

for 0,a in opts:
if oin (" -S’,’ ——station’):
station=a[:3]
try: test=CRS2station[a]
except:
print>>stderr, "Invalid station code, should be like KGX’

47

Program listings

exit(1)
ifoin ("-1",”--1line’): 190
line=a
if o in (' -D’,” ——destination’):
destination=a
try: test=CRS2station[a]
except:
print>>stderr, ' Invalid destination code, should be like KGX’
exit(1)
if o in (' -d’,” ——date’):
date=a
try: 200
test=addday(a)
except:
print>>stderr, 'Date invalid date, using default: 2005_Dec_29'
date=’2005_Dec_29’

if oin ("-t’,” —type’):
if a=='c’: type=1 #contour
elif a=="£': type=2 #file
elif a=="t": type=3 #timetable
else: type=0 #stdoutput 210

stations,distances,mintimes=stations_select(line,station,destination)
run(station,destination)

#! fusr/bin/env python

#./get_distribution.py —station=MAN —destination=MIA to produce
#distributions, use -e to change from g-exp to exp.

from commands import getstatusoutput,getoutput
from sys import exit,argv,stderr
import getopt
import re
10
path=getoutput(’ pwd")
exp=False

48

Program listings

try:
opts,args=getopt.getopt(argv[1:],” hs:d:e’ [’ help’,’ station=',’destination="])
except getopt.GetoptError:
print>>stderr, "Need opts - use ’'-h’ or '--help’ for more information."
exit(1)

for o,a in opts: 20
if o in ['-h’,” ——help’]:
print>>stderr, "/ —s’ station code: "—-d’ destination(s) code"
if oin ["-s’,” ——station’]:
station=a
if o in ["-d’,’ ——destination’]:
dests=a
if oin ["-e’]:
exp=1
if not station: print>>stderr,’ needs station code ’,
if not dests: print>>stderr,’ needs destination code’ 30

s,0=getstatusoutput(’ . /autocorre.py —-s’+station+’ -d’+dests+’

| colex 2 | ./cumulative.py >| temp.dat’)
s>>8
if s:
print>>stderr,” . . .failed to create temp.dat’
exit(1)

f=open(path+’ /temp.dat’," ")
g=open(path+’ /templ.dat’,’ w’) 40
g=open(path+’ /templ.dat’, a’)

last_min=0
num=False

x=f.read().split(’ \n")
for i,a in enumerate(x[:—1]):
min=int(a.split(’ \t ')[0])
if last_min+2<min:
num=i 50
break
last_min=min
if not num: num=len(x)
for i in x[1:num]:

49

Program listings

g.write(i+’ \n")
g.close()

s,o=getstatusoutput(’ rm temp.dat’)

s>>8

if s: 60
print>>stderr,” Unable to remove temp.dat, remove manually’

if exp==1:
s,out=getstatusoutput(’ cat templ.dat | nlfit_exp | gr.py -xl -y2,3’)
print out

else:
s,out=getstatusoutput(’ cat templ.dat | nlfit_g exp | gr.py -xl1 -y2,3")
print out

#! Jusr/binfenv python

simulate.py generates a series of random numbers and applies
them to a model set by beta, q and c paramters.

from sys import stdin,stderr
from random import random

def eq-x(x,beta,p,c):
a=1+(beta*x—c)*(1—p) 10
b=1/(1—p)
if not a<0: eq_x=pow(a,b)
return eq_x

beta=—0.34599

q=1.22727

¢=0.99605

iters=5069

maxdelay=600

i=1 20
prob=[1—eq-x(1,beta,q,c)]

last=1—eq_x(1,beta,q,c)

e_x=0.0

e_x2=0.0

50

Program listings

produces the model in the variable prob from the given parameters
for i in range(1,maxdelay):
x=eq_x(i,beta,q,c)—eq_x(i+1,beta,q,c)
e_x+=i"x
e_x2+=i*1*"x 30
prob.append(x+last)
last=x
i+=1
print>>stderr,” $.2£\t%.2£’ Y%(e_x,e_x2)

generates random numbers on the unit interval and applies them to prob
average=0.0
for i in range(0,iters):
rand=random()
for j,p in enumerate(prob): 40
if rand<p:
print ' $i %1’ %(i+1,j)
average+=(j—average)/(i+1)
break

51

Bibliography

[ALS3]

[A.LO5]

[BJ94]

[BTMAO4]

[FW]

[Gib]
[GNE]
[GSL]
[Mor04]

[Pol05]

B. Abraham and J. Ledolter. Statistical Methods for Forecasting. 1983.

Manolis I. A.Lourakis. A Brief Description of the Levenberg-
Marquardt Algorithm Implemented by levmar. Febuary 2005.

G. E. P. Box and G. M. Jenkins. Time Series Analysis, Forecasting and
Control, 3rd ed. 1994.

Ernesto P. Borges, Constantino Tsallis, Jose G. V. Miranda, and
Roberto F. S. Andrade. Mother wavelet functions generalized
through g-exponentials, 2004.

David Fairlie and Ming-Yuan Wu. The Reversed ¢-Exponential
Functional Relation.

Richard Gibbens. www.cl.cam.ac.uk/users/rg31/m25.
GNER timetable valid from 12 June to 10 December 2005.
http://www.gnu.org/software/gsl/.

Kent E. Morrison. g-Exponential families, 2004.

Katherine S. Pollard. Test statistics null distributions in multiple
testing: Simulation studies and applications to genomics. July 2005.

C. Quesne. Jackson’s g-exponential as the exponential of a series.
ULB/229/CQ/03/2.

George W. Snedecor. Statistical Methods, Eighth Edition. 1989.

52

www.cl.cam.ac.uk/users/rg31/m25
http://www.gnu.org/software/gsl/

BIBLIOGRAPHY BIBLIOGRAPHY

[SWO03] M. Schader and W.Gaul. Between Data Science of Applied Data Analy-
sis. 2003.

[ThoO2] Thomas Cook European Timetable, 2002.

53

	Introduction
	Background
	The railway system: a brief history
	The data set

	Descriptive statistics
	Cumulative delays
	Train tracking
	Distance-time plots
	Peak hours
	Distribution of delays

	Time series analysis
	Time series
	Autocorrelation

	Modelling the data
	Two possible models
	Exponential model
	q-Exponential model

	Fitting the models
	Weighting

	Which model is best?

	Simulation
	Application
	Concluding remarks
	More figures
	Program listings

