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Chapter 1

Introduction

1.1 Motivation

The theory of random walks has a long history. Since being introduced, it
has been applied in physics, economics, biology, traffic networks and inter-
net. People use this model for information exchanging, spreading problems,
sampling problems, ranking pages for search engine, network routing and so
on. For example, the advent of sensor, wireless ad-hoc and peer-to-peer net-
works has necessitated the design of distributed, fault-tolerant, computation
and information exchange. This is mainly because the topology may not be
complete known, or the nodes may join and leave the network so that the net-
work topology itself may change. These constraints motivate the design of
simple algorithms for computation where each node exchange information to
only its immediate neighbors in each slot of time; this follows the random walk
model.

In many applications, we need to know how soon the random walk will
become stationary. This relates to how good results we can get after a certain
time when we start a random walk, or on what kind of network we can get a
fast converging random walk. The classical theory of random walks deals with
random walk on simple, but infinite graphs. More recently, people paid more
attention to the random walks on more general, but finite graphs. So we can
treat a random walk as a finite Markov chain that is time-reversible. In fact,
the theory of random walk is quite similar to the theory of Markov chain. This
motivates me to analyse the properties of random walks, especially on mixing
time, which is the convergence rate of the random walk (or Markov chain).

It is highly likely that the convergence rate of random walks depends on
network topology, as the results of our experiments shown. This relates to
the second largest eigenvalue of the transition probability matrix, which I will
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Introduction Organization

discuss in more detail later. In order to find out how the topology structures
effect the mixing time, I used different graph models in this problem.

There are many theoretical results available for random walks performed
on regular lattices such as Z¢. But actually, it has been suggested recently
that more complex networks are relevant to the real world. Particularly, the
small-world model which was proposed by Watts and Strogatz [ ] ex-
hibits unusual connection properties and strong clustering with very small
average shortest path between two nodes, this is exactly the properties that
many complex networks in nature exhibit. M. E. ]. Newman mentioned several
small-world models built on lattices in [ ], which includes the models I
used in this report. These models have been applied to the analysis of various
biological, engineering, and social networks including information flow in the
Internet. So in this report, I analyse the mixing time of random walks on a
general class of random graphs including these special networks to see how
topology structures changes convergence rate. More recent research results
can be found in the papers [ A ]and [ ]

1.2 Organization

I begin in the next chapter by reviewing the relevant knowledge of graph the-
ory, including the basic definitions and some important models. In chapter
3, I introduce the random walk and Markov chain, with an example to inter-
pret several important properties of random walk and the formulas to calcu-
late these properties. The fastest mixing problem comes after, which aims to
find the smallest mixing time in a set of different networks. Most of the re-
search results are shown in chapter 5. First I explain the theories about the
second largest eigenvalue modulus, and list the numerical results of mixing
time on small regular graph which is got from our program. Then I con-
struct two small world random graph models by using Bernoulli and Erdds
random graph models. Large simulations have been done on these two mod-
els to get the mixing time; I focus on the changes on the numerical results
while I change the parameters of the models, which means the topology of
the networks changes, and derive the relations between the mixing time and
topology based on the numerical results. Some illustrative applications of this
fastest mixing problem are presented in chapter 5. Finally is the conclusion
and future work.
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Chapter 2

Graph Theory

2.1 Some basic definitions

In order to give all the mathematical definitions easily and clearly, it might be
best to start with a simple example.

Example: To warm up, consider this example of a path P5, which has 5
nodes, as the picture shown below:

O—0O—(E——®

Figure 2.1: 5 nodes path

* The degrees (number of links) deg(i) of all the nodes in P; are

deg(0) =1, deg(l) =2, deg(2) =2, deg(3)=2, deg(4) =1

* The adjacency matrix A is a n X n matrix with 1 in A;; if ¢ is connected to
j and O for the others. i = 0,1,...,n— 1,57 = 0,1,...,n — 1. Here the
adjacency matrix for P; is:

01000
10100
A=101 010
00101
00010



Graph Theory Important graph models

* Two other useful matrices for graphs are . and N. The normalized Lapla-
cian £ is the matrix with 1 on the diagonal, —1/+/deg(i) deg(j) when i is
connected to j and 0 at the other places. With the definition of .2, N can
be easily defined as N = I — .Z. The matrices of P; are shown below.

'11—%0100 ?%?oo
S S R AT il IR

2 V2 2 V2
_000—%1_ _000\/%0_

x Eigenvalues of a graph are the eigenvalues of the N matrix. Here are those
for graph P;:

o= {nn (2 s () o (25 ot - 1)

After the very intuitive introductions for these basic notions of graph the-
ory, now I present formal mathematical definitions of them. Table 2.1 is a table
for all the ideas I used here.

2.2 Important graph models

Here I introduce several different graph models, which I will use in our further
research.

1. Deterministic graph models

First I introduce some deterministic graph models; this is the type of
graph which has some special rules on its topological structures. Some
normal useful models are list in Table 2.2.

2. Random graph models

Generally speaking, a random graph is a graph consisting of n vertices
and its edge set is generated in some random fashion. However, accord-
ing to the different ways to generate the edges, we still can divide them
into some specific models. There are also many other random graph
models, Béla Bollobas introduced more in Random Graphs [ ]. In Ta-
ble 2.3 I only list those I use in this report.

(@) The two most frequently occurring ensembles of random graphs are
9 (n,m) and 4 {n, P(edge) = p} (abbreviated as ¢ {n, p}). The defi-
nitions and properties are listed in the table below.
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Graph Theory

Important graph models

graph A graph is an ordered pair of disjoint sets (V, E), which V is a
(simple nonempty set of elements, called vertices (or nodes, or points) ,
undi- E is a list of unordered pairs of the elements in V', which are the
rected) edges (or links) of G
degree The degree (or valency) di(v) = deg(v) of a vertex v is the num-
ber |E(v)| of edges at v.
regular If all the vertices of G have the same degree k, then G is k-reqular,
or simply reqular.
walk A walk W in a graph is an alternating sequence of vertices and
edges, say xg, €1, T1, €, . .., €, X, Where e; = x;_12;,0 < i < [
cycle If a walk W = woxy...2; 18 such that | > 3,xy = x;, and the
vertices x;, 0 < i < l, are distinct from each other and x, then
W is said to be a cycle.
connected | A non-empty graph G is called connected if any two of its vertices
can be linked by a path in G, and otherwise it is disconnected.
adjacency | The adjacency matrix A = (aij)nxn of G is defined by
matrix
o { 1 ifvv; € E
Y 0 otherwise
normalized | Let D be the diagonal matrix with D,; the degree of node i, L =
Laplacian | D — A be the (combinatorial) Laplacian matrix, the normalized
Laplacian, ¥ = D=Y2LD~Y2, is
L, ifi=]
Z(1,J) = { —1/y/deg(i)deg(7), ifi~j
0, otherwise.
N N =1 — &, which can also be calculated as follow:
o J 1/+/deg(i) deg(j), ifi~j
Ni,j) = { 0, otherwise.
where i ~ j means (i,j) € E.
eigenvalues| The eigenvalues of graph G(V, E) are the eigenvalues {{\n;},i =

1,2,...,n} of the matrix N.

Table 2.1: Basic definitions in graph theory
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name example definition Symbol

IfP=uxy... x4 isapathand k <3,
then the graph C' := P + xj,_1x¢ is called C,
a cycle.

Cycle

A graph in which each pair of graph
vertices is connected by a graph edge is K,
called complete graph

Complete
graph

<> |

A connected graph without any cycles is

Tree
a tree

A path is a non-empty graph P = (V, E)
of the form V = {xg, x1, ..., 21}

E ={zox1, 2129, ..., 28128} ;where
the x; are all distinct.

K

Path

\

Usually a grid refers to two or more
infinite sets of evenly-spaced parallel
lines at particular angles to each other in
a plane, or the intersections of such lines. G,
Mathematically, the k x k grid is the
graph {1, ... k}* with the edge set
@)@ ) i =415 — ] = 1)

Grid
(Mesh)

Table 2.2: Several deterministic graph models
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Important graph models

4 (n,m) (Bernoulli)

¢ {n,p} (Erd6s & Rényi)

9 (n,m) is an ensemble of
labelled graphs with vertex
set V(G) 1,2,...,n,
having m randomly chosen
edges (where M usually de-

& {n,p} is an ensemble of labelled graphs
with vertex set V(G) = 1,2,...,n, in
which every one of the possible (7)) edges
exists with fixed probability 0 < p < 1,
independent of any other edges.

pends on n).

G{4,1/4}
A “
Gt ® o
RN or 0

Table 2.3: Two basic random graph models

(b) Small world graphs

Many complex networks in nature exhibit two properties that are
seemingly at odds. The neighbors of neighbors are very likely to
be neighbors, and any two nodes can typically be connected by a
relatively short path. Watt and Strogatz referred to this as the small
world phenomenon [ 1.

In this report, I use a simple variant of this model. I start with n
nodes {v;,i = 1,2,...,n} where n > 3, first connect them one by
one to be a cycle. So now the graph has edges {v,vo, v;v;41,71 =
0,1,...,n —1}. Then I add several cross links {v,v,,0 < p < n,0 <
q < n} into the cycle. These graphs have the properties of the small
world model.

10



Chapter 3

Random walks on graphs

3.1 Markov chain

The Markov chain is a widely used model in networks. It is a memoryless pro-
cess which characterized by a transition matrix P. And it is also an important
model for random walks on graphs, to which I will refer now.

For example, consider a connected graph G(V, E') with 4 nodes (n = 4) and
4 edges (m = 4). V is the vertex set and E is the edge set. We define a discrete-
time Markov chain on the vertices of the graph as follows. Denote the state
of the graph at each step of time ¢ as X, wheret = 0, 1,.... For each step, X
has a transition probability, which is associated to each edge in the graph, to
make a transition between the two adjacent vertices. These probabilities are
all nonnegative and the sum of the probabilities of edges connected to each
vertex (including the self-loop if it exists) must be one.

Usually we describe the Markov chain via the transition probability matrix
P, which is defined as:

Definition 3.1 If at time t the state is at node i, then at time t + 1 the probability of
the move to node j is

Py =P(X(t+1)=j|X(t)=1), i,j=0,....n—1.

P is called the transition matrix, which satisfies

11



Random walks on graphs Markov chain

The definition above implies that P must satisfy

which states that transitions are allowed only between vertices that linked by
an edge.

Let 7(t) € R™ be the probability distribution of the state at time ¢:
mi(t) = P(X(t) =1).
The distribution (¢ 4 1) at time ¢ + 1 can be calculated as:
m(t+1) = P'r(t)

and it is easy to get the general expression for the distribution at any time ¢ via
7(0) which is the initial distribution at ¢ = 0.

m(t) = (P)'x(0)

What will 7 tend to as t — co0? There is another important definition about
Markov chain.

Definition 3.2 The distribution w is called the equilibrium distribution (or station-
ary/invariant distribution) if it satisfies:

T=muP

With this definition, we can easily get that for every graph G, the distribu-

tion ,
o deg (i)
2m
is stationary, where deg(7) is the degree of node i and m is the total number of
edges in G. But not all Markov chains have a unique equilibrium distribution.
Only when the chain satisfies some restrictions, the equilibrium distribution
will exist and be unique. Before we come to these restrictions, first let us have
a look at some related definitions.

(3.1)

Definition 3.3 The n-step transition matrix P, = (p;j(n)) is the matrix of n-step
transition probabilities

pij(n) - P(Xm+n = J’Xm - Z)

Definition 3.4 A chain is irreducible if any state can reached from any other, that is
foralliand j:
dn : P >0

12



Random walks on graphs Markov chain

Definition 3.5 State i is called recurrent if
P(X, =i forsomen > 1|Xy=1) =1,

which is to say that the probability of eventual return to i, having started from i, is 1.

Definition 3.6 The mean recurrence time p; of a state i is defined as

" _{ S nfi(n) ifiis recurrent

00 if i is transient.

fii 1s the first passage times of the chain, defined as
fij = Z fij(n)
n=1

where
flj(n) - P<X1 #]7}(2 #]77Xn—1 ;éjJX'I'L :]|X0 :Z)

w; may be infinity even if i is recurrent.

Definition 3.7 The recurrent state i is called null » lf Hi =00
non-null (or positive) if p; < oo.

Now we can state the theorem about the unique stationary distribution.

Theorem 3.1 An irreducible chain has a stationary distribution 7 if and only if all
the states are non-null recurrent; in this case, 7 is the unique stationary distribution
and is given m = p; " for each i€S, where ; is the mean recurrence time of i.

It is easy to see that the states of Markov chain always depends on time ¢;
let us think about the reversal of the time scale of a Markov chain.

Definition 3.8 Suppose that X,,:—oo < n < oo is an irreducible non-null recurrent
Markov chain, with transition matrix P and unique stationary distribution m. Sup-
pose further that X,, has distribution w for every n € (—oo, c0). Define the reversed
chain'y as:

Y,=X_,, —oco<n<o

It is not difficult to show that Y is a Markov chain also, and of course Y,
has distribution 7 for each n.

13
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Definition 3.9 A Markov chain X is called time-reversible if the transition matrices
of X and 'Y are the same.

Theorem 3.2 A Markov chain X is time-reversible if and only if [ |
TiDij = Tipji 4,J €V
Proof: The transition probability of Y are (wWhere m = —n)

bi; = P<Yn+1 = j’Yn = 2)
P(X_, 1 = j|X_p =)
P(X, = i| X1 = J)P(Xpuor = j)/P(X = 9)

= rs
- pﬂm

by the identit
T P(A|B) = P(B|A)P(A)/P(B).

Thus Pij = 4ij if and only if TiPij = T;Pji

3.2 Random walk

Given a graph and a starting node z,, we select a neighbor z; of =, randomly,
and move to this neighbor z;; then we select a neighbor of z; randomly, say
z2, and move to it, and so on. The sequence of these randomly selected nodes
x is called a random walk on the graph.

There is not much difference between the theory of random walks on graphs
and the theory of finite Markov chains; every Markov chain can be viewed as
a random walk on a directed graph, if we allow weighted edges. Symmetric
Markov chains can be viewed as random walks on regular symmetric graphs
and time-reversible Markov chains can be viewed as random walks on undi-
rected graphs. Let’s see in more detail. Here I consider a simple random walk
which chooses the next node from the uniform distribution.

Definition 3.10 Let G = (V, E) be a connected graph with n nodes and m edges. We
call a walk xoz+, ..., x, on G a random walk if at the ith step (0 < ¢ < n), we choose
a neighbor of v; with probability 1/ deg(v;) as the next node, where 1/ deg(v;) is the
degree of node v;.

Obviously, this random walk is a finite Markov chain. The transition prob-
ability matrix P can be calculated as:

- 1/deg(i), ifije E.
b = { 0, otherwise. (3.2)

14
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where deg(7) is the degree of node i.

If we denote the distribution at ith step as 7 (), the rule of the walk can be
expressed by the simple equation:

m(t) = (P")'(0).

It follows that the probability p;;(t) that, starting at node i, we reach node j in
t steps is given by ij entry of the matrix P*.

From Equation 3.2 and 3.1, we get 7(i)p;; = 1/(2m), where i,j € V and m
is the number of edges in G. So we move along every edge, in every possible
direction with the same frequency. If we are sitting at a node i, the expected
number of steps before it returns is 1/7(i) = 2m/d(i). If G is regular, then the
return time is just n, which is the number of nodes.

3.3 Measures of random walk

I now introduce the measures of a random walk that plays the most important
role in our paper. First we take an interesting example.

Example: = The picture below is the London underground map. Now I pick
a part of the map as an example, as shown in Figure 3.2. Consider starting
at any one stop, and choose which one to go next randomly, that is a random
walk on this graph. Now I am going to discuss some interesting questions.

1. If we start a random walk at King’s Cross, what is the expected number
of steps before we reach to Victoria?

Here I introduce a notion: hitting time H, ;, which is the expected number
of steps before node j is visited in a random walk starting at . We can
work out the value of H; ; by some certain formula which I will introduce
later. In our example, the hitting time from King’s Cross to Victoria is
Hgq = 38.5. Actually, we can easily calculate the hitting time H, ; for any
i,7 in a connected graph. If we put them in a matrix, say H, we can get
the hitting time of any two nodes in the graph from H. Ilabelled all the
nodes in the map above with 0,1,...,18.

This is the hitting time matrix:

With this matrix, contrast Figure 3.2 and Figure 3.3, we can get the hit-
ting time for any two tube stops in the map. For example, hitting time
from Monument to Baker Street is H, 9 = 31.4, which means if we start
a random walk from Monument, we will visit about 31.4 the other stops
before we reach Baker Street.

15
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<D PR CEPERED

Figure 3.3: Labelled tube map

2. Now let us think about what is the expect number of steps if we start at
King’s Cross and back to it again via Victoria.

Here refer to another notion: commute time k(i, j). This is the expected
number of steps in a random walk starting at 7 and the first time it return
to 7 via j. It can be calculated by:

k(i,5) = Hij + Hj;
So we get that the commute time return to King’s Cross via Victoria is:

k(8,1) = Hg, + Hy s = 38.5+29.6 = 68.1

3. We know that a Markov chain will converge to its stationary distribution
if it is ergodic. So here if we start a random walk on the tube map, for
each step the probabilities of all the stops that we may at are always
changing until the chain reaches to the equilibrium distribution. After
that, these probabilities are fixed and will not change any more. The
question is, how fast it will converge to the stationary distribution for a
random walk? And how many steps it will take?

The answer should be the mixing rate and mixing time. These are the most
important properties I studied. Mixing rate is a measure of how fast the
random walk converges to its limiting distribution. It can be calculated
by the eigenvalues of the transition probability matrix P; I will discuss it
in more detail later. Mixing time can describe the convergence rate more
intuitively. It equals 1/(mixing rate), which means the number of steps
before the distribution of a random walk be stationary. In our example,
the mixing rate and mixing time are:

mixing rate = 0.101568

17
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40.4 39.0

Figure 3.4: Hitting time matrix
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mixing time = 9.845655

To make the result easier to understand, I add some more edges to the
Figure 3.2. Now the tube map looks like:

’ Paddington H Edgware

’ Baker St

Moorgate Liverpool St

Notting Hill Gate Bond St H Oxford H Tottenham H Holborn

High Street Green Park Monur ment Tower Hill

Embkment

’ 1 ‘ ’ ‘Wstmster

Figure 3.5: Labelled tube map

I calculated the mixing rate and mixing time again, this time we get:
mixing rate = 0.168313
mixing time = 5.941294

Notice that the mixing rate increased and mixing time decreased. It
shows that the graph has a faster convergence rate after I add some more
cross links into it.

Table 3.1 is the interpretations of these measures in random walks.

We defined the definitions of the main parameters in random walks, but
how can we get these values, how to calculate them? Here I am going to intro-
duce the methods now.

Recall that the probability pj; that the random walk starting at i and will be
at j after ¢ steps, is the ij entry of P*. This suggests that we can use the spectral
theory of matrices to solve these problems.

The matrix P has largest eigenvalue 1, with corresponding left eigenvector
7 and right eigenvector 1, the all-1 vector on V. In fact, 7P = 7 express that  is
the stationary distribution, while P1 = 1 means that exactly one step is made
from each other.

The hitting time is determined by the eigenstructure of transition probabil-
ity matrix P. Here P is not symmetric unless the graph is regular, but it is easy
to make it into a symmetric form.
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hitting time (act in a random walk starting from node 1, hitting time H, ;
cess time) is the expected number of steps before node j.

commute time | commute time k(i, j) is the expected number of steps in
a walk starting at i for first return to i via j.

cover time the expected number of steps to reach every node.

mixing rate measure of how fast the random walk converges to its
stationary distribution.

mixing time | measure of the number of steps for the distribution to
reach the stationary distribution.

Table 3.1: Interpretation for properties of random walk

Consider a graph G(V, E') with adjacency matrix A and transition probabil-
ity matrix P. We have the relation P = DA, where D is the diagonal matrix
D = diag(1/deg(i)) which I also used in section 2.1. Now think about the
matrix N = DY2ADY? = D=1/2)M D2, This is symmetric and has the same
eigenvalues with P. Here’s the proof.

Proof: since
N = D'2AD'Y?

we can get
A= D Y2ND™/? (3.3)
substitute equation 3.3 into P, we get
P=DA=DD Y2ND™'/? = p'/2ND~1/? (3.4)
suppose
Pv = )\v (3.5)

then use equation 3.4 into equation 3.5
D'?ND™'?v =X

D_1/2D1/2ND_1/2U _ D—I/Q)\,U
ND™ 2y =AD"y
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let
w= D%y

so A is the eigenvalue of IV, with the eigenvector w

Because N is symmetric, the eigenvalues of N are real, and by Perron-
Frobenius theory, are all less than one in modular. Write them in an non-
increasing order:

l=MZ2X22A2>2-1

The method to calculate hitting time is from a theorem.
Theorem 3.3 Hitting time H; ; can be calculated as:

- 1 V2, Vi Uk
Hl" —9m kz' . tYRJ
I TN <deg<z> Tzl deg@)

where )y, is the kth eigenvalue of N, vy is the ith component of the normalized eigen-
vector corresponding to Ay, deg(i) is the degree of node i and m is the number of edges
in the graph.

L. Lovasz describes the deduction of the formula above in [ ], which 1
am not going to go through here.

We can easily calculate the commute time by hitting time, since they have
the relation k(¢, j) = H; ; + H; ;.

The mixing rate can be achieved as follows. If the graph is non-bipartite (A
graph G = (V, E) is bipartite if V' admits a partition into 2 classes such that
every edge has its ends in different classes. Clearly, a bipartite graph cannot
contain an odd cycle, a cycle of odd length. The bipartite graphs are all periodic,
with periods 2, so they are not ergodic and do not have a unique equilibrium
distribution), then p; — d;/(2m) as t — oo, and the mixing rate is

p = limsupmax |Py(t) — d(j)/(2m)|"*
2y

t—o0
And the mixing time is the reciprocal of mixing rate

mixing time = 7 = 1/log(1/u)
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3.4 Fastest mixing problems

The rapidly mixing Markov chain problem has been much studied. We are
looking for the fastest mixing time from all the graphs, so I focus on the dif-
ferent mixing time of graphs with different topology. Stephen Boyd did some
research on the fastest mixing problem too, but changed the weights on each
edge and fixed the graph structure (in fact, he also changed the structure since
he changed the weights by adding self-loops to each node).

Here’s a table which compares the two different method for finding the
tfastest mixing Markov chain. (P. > 0 means all the components in P are
greater than or equal to 0)

Boyd - continuous This work — discrete

tind the fastest mixing Markov
chains from all the chains with
different weights

find the fastest mixing Markov chains from
all the chains with different topology struc-
tures

fixed the topology structures of
graphs, change the transition
probability p;; in P by adding

fix P as 1/deg(i) for p;;, find a optimal
graph which has the fastest mixing time by
changing the degree deg() of the node

self-loops to the nodes, find
a optimal P which gives the
fastest mixing time

minimizep u(P) minimizeg; u(P(G))

subjectto P.>0 subjectto P.>0

P1=1 P1=1

pr=p b 1/ deg(i), ifij € FE
i =
Fj=0, 4,j¢FE 0,

otherwise

Table 3.2: Fastest mixing problem

There is a further problem: if we can find the fastest mixing chain both on
topology and weights? We combined Boyd'’s idea and ours together. First we
find a set of graphs with all the different topological structures, then find the
fastest weight on each different topology. Finally we pick out the fastest chain
from the set of the graphs with fastest weights. This chain is the fastest one
both on topology and weights. This optimization problem is a semidefinite
program, for which I used the sdpsol package [ I
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Fastest mixing problems

FMSMC

FMRMC

find the fastest mixing symmetric
Markov chains

find the fastest reversible mixing
Markov chains

first find the fastest weights on
all different topological symmetric
chains, then find the fastest mixing
one from these fastest weights

first find the fastest weights on all dif-
ferent topological reversible chains, then
find the fastest mixing one from these
fastest weights

minpg) minp max {A(P), A, (P)}

s.t. P.>0
P1=1
Pr=p

IDi,j:0> Zang

minpe minp max {A2(P), A\ (P)}

s.t. P.>0
P1=1
I[P = P™Il

Pi,j = 07 Z)J € E
here II = diag(m;)

Table 3.3: Combined fastest mixing problem
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Chapter 4

Computational results

4.1 Second largest eigenvalue modulus (SLEM)

In the last section, I discussed about the methods to calculate the mixing rate,
which I use the transition probability pf;. In fact, the mixing rate is also deter-
mined by the eigenstructure of transition probability matrix P as hitting time.
Now I am going to talk about another method to calculate the mixing rate
which is much easier.

I will refer to spectral graph theory here. The use of matrix theory and lin-
ear algebra to analyse graphs is called spectral graph theory. Actually I use the
eigenvalues of our P matrix here instead of the adjacency matrix often used
in spectral graph theory; they are closely related to each other. I will show the
relations between them in the next section.

Assume we have all the eigenvalues of matrix P {A\g, A1,..., A\,_1}. We
know that the eigenvalues of P are the same of IV, so if we write the eigenval-
ues in the non-increasing order as the same in section 3.3, follow the Perron-
Frobenius theory, we will have

The convergence rate of a random walk/Markov chain to the equilibrium
distribution is determined by the second largest eigenvalue modulus (SLEM)
of P.

u(P) = max [\(P) = max{h(P), ~Au(P)}

The smaller the SLEM, the faster the random walk/Markov chain converges
to its equilibrium distribution.

Here are some theorems about the SLEM which are deduced from spectral
graph theory. [ ]

24



Computational results Second largest eigenvalue modulus (SLEM)

Lemma 4.1 For a graph G on n vertices, if 1 is the second largest eigenvalue of matrix
P,

1. for n > 2, we have

p > == if Gis not complete
p= = if Gis complete
2. foralli <n — 1, we have
A= —1

with \,_1 = —1 if and only if G is bipartite.

Lemma 4.2 For a k-regular graph G on n vertices, we have

n—Fk

P)Z2\| 7—2

Lemma 4.3 For a graph G on n vertices, let dy denote the harmonic mean of the
deg(v), i.e.,

1 1 1
dgr n Z deg(v)’
SLEM of P pu(P) satisfies

1+ (n— )u(P)* > %(1 — (14 p(P))(~— - 1)),

where d denotes the average degree of G.

Lemma 4.4 For any fixed k and for any infinite family of reqular graphs with degree
k, we always have

k—1
liminf pu(P) > 2

n— o0 k

Here we required the chains to be reversible, which makes the eigenvalues
of P real. It is equivalent to saying that for every pairi,j € V, n(i)p;; = 7(j)pji.
This means that in a stationary walk, we step as often from i to j as from j to 1.
In our cases, we have 7 (i)p;; = 1/(2m) for ij € E, which means the chains do
have the property of time-reversibility.
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Computational results Related matrices and eigenvalues

If the Markov chain is ergodic (similar to random walk), which means it
has a unique equilibrium distribution, then p(P) < 1 and the distribution con-
verges to uniform as about y(P)". Now we can have the expression for mixing
rate by p(P):

mixing rate = log(1/u(P))

and the mixing time is the reciprocal of mixing rate

mixing time = 7 = 1/log(1/p)

We can always get the mixing time if mixing rate is not equal to 0. But
when p(P) = 1, which means mixing rate = log(1) = 0. So we cannot get
mixing time from it. This is exactly the case for the bipartite graphs. They are
not ergodic and do not have a unique equilibrium distribution. So they always
have )\, = —1. That’s why we can only talk about mixing time and mixing rate
for non-bipartite graphs.

4.2 Related matrices and eigenvalues

SLEM uses the transition probability matrix P to calculate the eigenvalues. I
referred to matrix N, which has the relationship N = D'/2AD'? with adja-
cency matrix A, has the same eigenvalues of P. So we got

= max{Ay(P), =\, (P)} = max{A2(N), =\, (N)}
This is used to calculate the hitting time since the eigenvectors of NV are differ-

ent from P.

I also referred to normalized Laplacian matrix L, whichis & = I —N. These
matrices are all related to the degrees and adjacency matrix A, so we compared
the eigenvalues of the four matrices A, £, N, P, here I use cycle, complete
graph, star and path as four typical cases.
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Graph Eigenvalues (A1,...,\,) , (p=max{|A2],|As|})
name example type A (Biggs) [ ] Z (Chung) [ ] N (Lovasz) | | P (Lovasz) [ ]
- @ 2COS(2k7T), 1—cos(2k”), COS(QI:L”)
. / \ ol k=0,...,n—1 k=0,...,n—1 k=0,...,n—1 ;
n ® ycle
0\/ M:2cos<2m£2h> =1—cos (2Ln£2j7r) — o n/QJTr) )
) 2cos (%) n odd ] 1—cos (%) , nodd cos , nodd
2 n even 2, n even n even
n —1 m
% Complete (n=1), (=1)@n-1) 0, n—1(n—1) 1, n—1(n—1) Q
" \ graph B
p=1 1=ty = @
\ \/n—l,On 1 —vn—1 O,l(nfl),Q 1,0(71,1) 1
Sh « Star
Q
— T =2 p=1 »
2 cos <nkf1) 1 — cos (nk”1> , cos (%)
Py, .\//l Path k=1,...,n k=0,...,n—1 k=0,....n—1
MZQCOS(HL_H) ,u—l—cos(n 1> ,u—cos(n 1) 2
Ae=1-— Ay AN=1—-)Ag
Relationships of A
A = D'2ND'/? L=I-N N = D'Y/2AD'/? P =D'Y2ND™1/?

Relationships of matrices

P=DA

Table 4.1: relationship between eigenvalues of matrices
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4.3 Small graphs - regular graphs

I divide the graphs according to the number of nodes. More than 50 nodes are
large graphs, 20 to 50 are medium graphs. The graphs with less than 20 nodes
I call small graphs. Before we come to the large graphs which can be a model
to the network, I did much studies on small graphs first since the number of
small graphs with fixed nodes will not be too large, we can do the research
over all cases, which will be easier to test ideas and find out some properties.
Here I focus on the regular graphs.

SLEM has a constraint: we require a reversible chain to make the eigen-
values real. So I tried small regular graphs, which have the same degree for
all nodes. The is the special case of reversible chains, since they always have a
symmetric transition probability matrix P. I calculate the mixing rate and mix-
ing time, and find out the minimum and maximum, also the average of all the
graph in the same set. And since the bipartite graphs do not have a stationary
distribution, I count all the cases out which will get 1 for SLEM. Table 4.2 is
part of our result. The complete table is in Appendix A.1.

From the table in Appendix A.1, we can see that the average mixing time is
increasing as n increases and decreasing as degree increases. It is easy to think
about. If the nodes increases, that means one need to visit more nodes on the
random walk, that will take more steps before it reach to the equilibrium state,
which means the mixing time will increases. And when the degree increases,
we will have more available paths to take to reach the other nodes, in other
words, we have the probability to take a short path than a long one. This will
make the convergence faster, and reduce the mixing time.

Also I applied the FMRMC algorithm to find the fastest reversible Markov
chains (weighted directed graphs). And I list part of the results in Table 4.3.
The complete table is in Appendix A.2

By solving the SDP optimization problem, we got all the results in the table
in Appendix A.2 for the small regular graphs. Compared to the results shown
in Appendix A.1, we can see that some fastest mixing chains are improved,
some remain the same. The improved results are in fact directed weighted
graphs since we search for the fastest one by changing transition probability
matrix P.

4.4 Random large graphs - small world

After some research on small graphs we come to large graphs, which can be

up to thousands of nodes and can represent the real networks we have in our
life.
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Table 4.2: Mixing time on small regular graph (part)

n | deg | num || maxtime graph mintime graph avertime

10| 3 17 15.5896 2.4663 6.8216

10| 5 59 7.4542 1.2427 2.2145

10| 6 21 2.4663 0.9102 1.5722

10| 4 58 7.7220 1.7195 @ 3.4093

10 7 5 1.1802 1.0168 1.1475
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Table 4.3: FMRMC on small regular graphs (part)

nodes | degree || max time graph min time graph
10 3 14.9392 2.4663
10 4 4.7185 1.5767
10 5 4.3522 1.1802
10 6 2.4663 0.9064
10 7 1.1802 0.7670
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I combined the random graph models together to make the problems easier
to understand. Here, basically I studied the small world model for random
graphs. I applied the two basic models G(n,m) and G{n,p} which I referred
in former section to both small world and scale free graphs to see how the
mixing time changes as the graphs change their topology structure.

1. SW(n,m)

First I applied the G(n, m) model referred in chapter 2 on small world.
We call it SW (n,m) and build the whole model as follows:

(a) Generate a cycle with n nodes, so we have n nodes and n edges in
the graph.

(b) Choose randomly two nodes i,j which are not connected, add an
edge between them.

(c) Keep on adding edges until there are n + m edges in total (which
means we add m more edges to the original cycle) .

Obviously, the mixing time changes as (n, m) changes. I will analyse how
these two arguments change the mixing time.

In the former section, we have already seen that the mixing time for reg-
ular graphs are increasing as n increases, and I find that the mixing time
is in direct proportion to n?.

Let us take the cycle, which is the simplest one, as the example to show
this relation. We can write the mixing time 7, which is also the second
largest eigenvalue of N, in another way, using the cos format I list in the

table in appendix .0.4
B B (n—1m\| s
= max{|Az], [ \,|}) = |cos (—n = cos <E>

Substitute into 7, we get:

I
p(p)  log(u) — logcos (%)

T(p) = (4.1)

Equation (4.1) can be expanded as Taylor expansion; we get the result
from maxima:

2n? 1 2 5t B
()~ 5 3~ 350 ~ Taem T O (42)
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in order to make the expression simpler, we square root the left part of
equation (4.2) and multiply with the coefficient 7/+/2, then from maxima
we get the Taylor expansion:

T 2 1774 N
2" T T Ton T w0n® T

for large n, we have
\/?
— TN
2

So if we calculate mixing time 7 of circles with different number of nodes
n, there should be a linear relationship:

\/;W ~n (4.3)

Now we proved that mixing time is in direct proportion to n?, which is

the same as
pm
—T ~nNn.
2

I collected the mixing time 7 for graphs with different n and m (since the
m more edges are generated randomly, I ran the program for 100 trials to
get the average of mixing time for each set of (n,m)), and then separated
them into several groups by different values of m. In each set, I find the
linear relation on n and /%7 by using linfit (see appendix 1), and get
the result as follows, where z = n and y = \/gw.

Ocl  y=—0.108121 + 1.00231x
lel  y=0.301142 + 1.00392x
2cls  y=1.1288 4+ 0.739733x
3cls  y =0.754638 4+ 0.601531x
4cls = 0.568563 + 0.51182z
bels  y = 1.15241 4+ 0.431276x
6cls y=1.10154 0.385293x
Tcls  y=1.24153 + 0.344286x
8cls = 1.03032 + 0.320241z
9cls y=1.19224 + 0.291103x
10cls y = 1.21888 + 0.270236x
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The result shows that n and /7 do have linear relationships to each
other, which is also true for all the graphs satisfied this model but not
only the cycle cases. And the slopes are decreasing as random links m
increases.

Figure 4.1 is the plots of the slopes by m:

slope of different number of shortcuts slope of different number of shortcuts
1.2 T T 0.2 T T
0.0
1.0¢—= :

\ —02F
ok \ ; 1 -04-

—0.6 -

slope
log(slope)

-0.8

- —1.0f
04} ! . ; 4

—s —-1.2+ B
0.2 L L L L —14 L L L L
0 2 4 6 8 10 0.0 0.5 1.0 1.5 2.0 2.5
cls log(cls)

Figure 4.1: Relation between slope(,/Zm ~ n) and m

We can see that the slopes are not linearly dependent on m. A tricky
thing is that the mixing time for m = 1 is surprisingly a bit higher than
m = 0, which is not in our expectation. I am still working on this try to
tind out the reason. But in general, we can see the decreasing of slope
as m increases very clearly. Although they are not linearly dependent
on each other, when I plot them into log scale, the curve became very
straight. So it might be that the slope is approximate to m".

Now let’s see how m affects the mixing time. Figure 4.2 is the plot of
log(mixing time) by log(m) for large graph, the number of the total nodes
nis 11,21,51, 101,201,501, . .., 5001

Since log(0) cannot be achieved here, so I put the mixing time for m = 0 at
log(nre) = —0.5 in the picture. The mixing time decreases as the random
cross links increases. This is the same results as I did on the small regular
graph before. It is quite clear that all these lines are very straight and
seem to have similar slopes.

From equation (4.3), we can get
log(7) = 2log(n) + log(2/)

Now I subtract 2log(n) from each data, which makes all the lines start
close to the same node (—0.5,1log(2/7)). Figure 4.3 is the plot:
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11-5001nodes

T T I T T T T T I

~ ~ ~ ~
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log(mixing time)
Co
[
|

log(nre)

Figure 4.2: Plots of log(mizingtime) by log(m) for small world
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log(tau)—-2log(n)

Figure 4.3: Plots of log(mizingtime) against log(m) start at the same beginning
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It is obvious that the mixing time is very large when the graphs have
large n and small m. Since the range of mixing time is very large, it is not
easy to see how the surface changes step by step, so I made the contour
plot for mixing time of SW (n, m) graphs in log scale, which more clearly
shows the relations amongst them. Figure 4.4 shows how it looks:

........... N
........... ° 18!.

.... i ...

.. 8.85¢ 9.54; 10.2:

8.73( 9.42; 10.1! 10.7¢

8.60: 9.297 9.987 10.67 11.3¢

9.02¢ 9.72/ 10.4; 11.11

9.16! 9.86 10.5! 11.2¢
8.86¢ 9.56/ 10.27 10.9¢

8.69! 9.39 10.0¢ 10.7¢ 11 4(..

9.18{ 9.88« 10.5¢ 11. 2!....
8.931 9.637 10.3¢ 11. Dt.....
8.64! 9.33¢ 10.0¢ 10.7¢ 11. 4'.....
8.97¢ 9.67¢ 10.3¢ 11. D‘......
9.23t 9.93¢ 10.6¢ 11. 3'......
8.70( 9.40¢ 10.1 10.8: 11. 5......

Figure 4.4: Colour plot of mixing time against « o log(m) and y o log(n)

The contour plot shows that the mixing time in log scale changes very
smoothly as the other two coordinates change, with a certain slope. Also
I drew the plot in 3D space. Figure 4.5 is the 3D plot in log scale generated
by maple .

From this plot, we can see that the surface is almost ﬂat this also proves
that the mixing time is in the directed proportion to n*» and m*», where
k, and k,, are certain numbers:

Tmnk"ﬁ:sm

2. SW{n,p}

Here we use the model G{n,p} on the small world, call it SW{n,p}. In-
stead of generating each edge by probability p, I found a more efficient
way generate these graphs.
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Figure 4.5: 3D Plot of mixing time against n & m in log scale

Suppose we want to generate a set of graphs which satisfy the SW{n, p}
model, it is easy to see that the probability that a graph has exactly m
edges for 0 < m < (}) fixed is

Pr(m edges| = (*Z ) (L )N

where N = (1), which means the number of edges in n nodes complete
graph. This is exactly binomial distribution. When n become large, N =
() also become large, this distribution is approximate to Poisson distri-

n

bution, and m can be calculated from p and n, thatis m = Np = (})p.

So now we can generate these graphs in a simple way. Similarly we start
at n nodes cycle and add some additional cross links to it.

(a) Generate a cycle with n nodes, so we have n nodes and n edges in
the graph.

(b) Generate a set of number mgy.my, ..., m; which are binomial dis-
tributed and the probability p of them is fixed.

(c) Generate a set of graph SW(n,mg), SW(n,my),...,SW(n,my) us-
ing the SW(n, m) model.
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I calculated the average mixing time for each group with different mean
m, plotting each group with the same log(p) axis. The pictures in Fig-
ure 4.6 are the plots for different number of nodes.

We can see clearly that the log(7) is decreasing, and it is a smooth curve.
As n increases, the data become more convergent and the range of mixing
time is narrower as p tends to 1. When n is small, log(7) only have a few
different values at small p. This because for small n and p, the number of
cross-links equals to 1 very often, these different value of log(7) shows all
the mixing time with 1 cross-link at different position, which is not many
when n is small.

Unfortunately I did not have time to figure out the relations between
them. I take 1001 nodes SW{n, p}, pick out the tail of the curve, which p
is approaching to 1. Figure 4.7 is the plot in log scale:

The plot is very close to straight line. linfit shows the linear relation
between log(7) and log(p):

y = —1.25033 — 0.31463z

So as p tends to 1, the mixing time is approximate to cp”.

Since the SW{n, p} model is based on SW (n,m), for a fixed set (n, p), we
can get a mean value of the number of the cross links, which equals to
(’2‘) p. So with the same n, the values of p in model SW{n, p} are propor-
tional to the mean value of m in SW(n,m).

2m

p:n(n—l)

From the result we got for large p:

T%Cpk

o 2m \F
T n(n —1)
Take log of both sides:

log(7) = klog(m) — klog(n(n — 1)) + klog(2c)

It can be deduced that

When n is large, n(n — 1) = n?, we get
log(7) =~ klog(m) — 2klog(n) + C;

here C is a constant.

The analysis and results above shows how the mixing time changes by
changing the topology of the small world models. In SW (n, m) and SW{n, p}
when p is large, the mixing time 7 &~ O(m*") ~ O(n").
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Figure 4.6: Mixing time for SW{n,p} graphs for n = 11,21,...,501 with
binomially-distributed cross-link numbers: m ~ binomial((}) — n, p)
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Figure 4.7: Mixing time for SW {1001, p} graph with binomially-distributed

cross-link numbers: m ~ binomial(('}") — 1001, p)
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Chapter 5

Application and conclusion

5.1 Applications

Since random walks have been applied to various fields, the mixing time, as an
important property of it, also has many applications. It can be used to measure
the random walk on a certain network, or for some random walk applications
find the optimized network to get a ideal solution quickly. Here I simply list
several applications.

1. Information exchange

Let us see an algorithm for information exchange. Suppose a node has
some data which it wants to pass on to all the other nodes in the network.
It does this by passing a copy of the data to one of its neighbour chosen
at random, and repeats this until the data reaches all nodes. In the other
words, it starts a random walk to pass that data in the network until
the data is received by all nodes. Stephen Boyd [ ] did research
showing that the time this process takes clearly lower bounds the mixing
time of a random walk on that network. So we can use the mixing time to
estimate the total time that for the information exchange cost in a certain
network. And can be improved by changing the topology structures of
the network to reduce the mixing time.

2. Page ranking

The system for ranking web pages of famous search engine Google uses
an ingenious algorithm. They describe all the web pages by a directed
graphs. Pages are the nodes and the edges exist if there are links between
them. PageRank is determined by = which is the stationary distribution
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of the Markov chain on the graph. So suppose 7; is the distribution state
at step i, it can be calculated as

i1 :dPﬂ'Z—F(l—d)

here d is some constant in the range 0 < d < 1, P is the transition prob-
ability matrix of the Markov chain. Desmond and Alan described it in
more detail in their paper [ ]. For a search engine speed is very im-
portant. There are thousands of people submitting their search require-
ments to the server every second, the PageRank process must be fast and
accurate. The mixing time tells people how long it will take to ranking
these pages, that is, how long would people wait before they get their
search results. It's a simple way to evaluate this algorithm.

3. Sampling problem [Gur]

For many fundamental sampling problems, the most useful and normal
way to solve them is to use random walk. Suppose (2 and let 7 be a prob-
ability distribution on 2. The general ‘sampling” problems them to pick
an element of (2 randomly according to the distribution 7. So to sample
according to a distribution 7, we do as follows: define a Markov chain
which has a unique stationary distribution 7. Starting from an arbitrary
state in (2, take a random walk on the Markov chain for some steps, and
then output the final state, which is the sample we want. The stationary
distribution implies that, by taking the walk long enough, we can en-
sure that the output state is arbitrarily close to the desired distribution 7.
So the mixing time is one of the techniques to decide how long the ran-
dom walk we take will be sufficient to get a sample result which is good
enough. So if we can obtain good upper bounds on the mixing time of
the chain, we can know at least how many steps we need to get a good
sample result.

5.2 Conclusion and future work

This report generally introduces the random walk on the undirected graphs,
together with some important properties and focus on the mixing time to mea-
sure the convergence speed of a random walk. The mixing time is determined
by the second largest eigenvalue modular of adjacency matrix (SELM). Since
for large non-symmetric matrix it is not easy to find the eigensystems, I stud-
ied the eigensystems of several related matrices, find that the matrix IV, which
is symmetric and defined by L. Lovéasz, can give the answer more practical and
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easier than any other matrices. This made it practical to calculate the mixing
time for large network.

We raised the fastest mixing Markov chain on topology problem based on
the practical program to find the SELM of the matrix N for all different topol-
ogy network (still connected and fixed with the number of nodes). And then
I found that Stephen Boyd’s fastest mixing Markov chain problem based on
changing the weights. Both these two FMMC problems constrain on either
tixed weights or fixed topology, so I defined the new fastest reversible (sym-
metric) mixing Markov chain problem (FRMMC), that is the fastest reversible
chain both on topology and weights. It is better since it does not have any
constraints on either topology or weights.

I did more research on the effects to mixing time which caused by changing
the topology, based on the small world models defined by M. J. Newman.
The numerical results got from experiments on model SW (n, m) and SW{n, p}
shown that the mixing time 7 is to the right proportion of n” and m?. And the
analysis confirmed it. So the convergence speed of a random walk (or Markov
chain) is to the proportion of p power to the number of the total nodes and ¢
power to the number of the cross links in the networks, where p and ¢ are some
fixed constant.

This is the work I did so far. It will be better if we can get the analytical
results of the relations between mixing time and topology. Also more models
will tell more information. Although there is not enough time to do all these
analyses, it still worthwhile for someone to do more research in this field. Here
I will raise some suggestions on future work which might be useful.

1. Analytical proof of the relations between 7 and n, m

I have only derived the relations between 7 and n, m numerically. The
eigenvalue perturbation might work to find the relations analytically, but
there is a problem with repeated eigenvalues, which means eigenvectors
are not uniquely determined. The perturbation theory needs the eigen-
vectors, so we cannot use it unless we know what direction we should
take in the eigenspace. So if there is some way to deal with the degen-
erate eigenvalues, we may get the numerical results proven analytically
and get an exact expression for the constants p and q.

2. More models

Small world is only one of the important network models in real world.
There are many other models which are also have very good properties
and widely used. Such as scale-free graphs, mesh (torus) graphs and so
on. If the mixing time can be studied on these important models, it will
be more useful and more applied.
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3. Hitting time and mixing time

I did not do much work on hitting time in this project. There are already
many research carried on this field. Hitting time is also an important
property of random walk, it related to the spread problem and the trans-
mitting speed. The average hitting time on the whole network somehow
explains the connectivity of a network, and should have some strong re-
lations with mixing time.

4. Mixing time and graph statistics

The graph statistics, like mean shortest path, cluster coefficient, etc., de-
scribe the topology structure of a network. We have seen that the topol-
ogy effects the mixing time in a simple way, so the graph statistics might
explain the way that the mixing time changes.
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Complete computational results

A.1 Mixing time on small regular graphs

Table A.1: Mixing time on small regular graphs

nodes | degree | num | max time graph min time graph avertime
3 2 1 1.4427 V 1.4427 v 1.4427
4 3 1 0.9102 ﬁg 0.9102 $ 0.9102
5 2 1 4.7184 O 4.7184 Q 4.7184
5 4 1 0.7213 @ 0.7213 @ 0.7213
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Complete computational results

Mixing time on small regular graphs

Table A.1: Mixing time on small regular graphs

nodes | degree | num | max time graph min time graph avertime
6 3 1 2.4663 @ 2.4663 @ 2.4663
6 4 1 1.4427 @ 1.4427 @ 1.4427
6 5 1 0.6213 % 0.6213 % 0.6213
7 2 1 9.5891 O 9.5891 Q 9.5891
7 4 2 3.4761 @ 1.7340 % 2.6050
7 6 1 0.5581 0.5581 0.5581
8 3 4 6.3292 3.4026 M 4.7346
_—
8 4 5 4.7184 1.4427 @ 2.4941




Complete computational results

Mixing time on small regular graphs

Table A.1: Mixing time on small regular graphs

nodes | degree | num | max time graph min time graph avertime

8 5 3 1.9576 @ 1.3735 @ 1.7629

8 6 1 0.9102 % 0.9102 % 0.9102
N

8 7 1 0.5139 0.5139 5'5‘,_{';’? 0.5139
\[[/

9 2 1 || 16.0765 O 16.0765 O 16.0765

9 4 16 8.6134 @ 1.4427 @ 3.0804

9 6 4 1.4427 @ 1.1591 @ 1.3718

9 8 1 0.4809 0.4809 0.4809

10 3 17 15.5896 2.4663 6.8216
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Complete computational results

Mixing time on small regular graphs

Table A.1: Mixing time on small regular graphs

nodes | degree | num | max time graph min time graph avertime
10 4 58 7.7220 @ 1.7195 3.4093
10 5 59 7.4542 @ 1.2427 2.2145
10 6 21 2.4663 0.9102 1.5722
10 7 5 1.1802 1.0168 1.1475
10 8 1 0.7213 0.7213 0.7213
10 9 1 0.4551 0.4551 0.4551
11 2 1 24.1836 24.1836 24.1836
11 4 265 12.3769 1.7195 3.6497




Complete computational results

Mixing time on small regular graphs

Table A.1: Mixing time on small regular graphs

nodes | degree | num | max time graph min time avertime
11 6 266 5.4848 \ 1.0903 1.6889
11 8 6 1.0195 0.9152 1.0022
11 10 1 0.4343 0.4343 0.4343
12 3 80 27.0755 % 2.4663 8.5713
12 4 1540 || 14.5177 @ 1.4427 3.7494
12 5 7847 || 10.8962 1.0914 2.3717
12 6 7848 | 10.6884 0.9102 1.7613
12 7 1547 || 2.9720 - 0.7982 1.4004
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Complete computational results

Mixing time on small regular graphs

Table A.1: Mixing time on small regular graphs

nodes | degree | num | max time graph min time avertime
12 8 os | 14427 | eir? | 08693 1.1517
. '%e el . .
==
12 9 9 0.9102 0.8388 0.9023
12 10 1 0.6213 0.6213 0.6213
12 11 1 0.4170 0.4170 0.4170

50




Complete computational results FMRMC on small regular graphs

A.2 FMRMC on small regular graphs

Table A.2: FMRMC on small regular graphs

nodes | degree || max time graph min time graph
3 2 1.4427 V 1.4427 V
4 3 0.9102 ﬁ; 0.9102 ﬁ;
5 2 4.7184 O 4.7184 O
5 4 0.7213 .@ 0.7213 .@
6 3 1.9576 1.9576 |
6 4 1.4427 @ 1.4427 @
6 5 0.6213 % 0.6213 %
7 2 9.5891 Q 9.5891 Q
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Complete computational results FMRMC on small regular graphs

Table A.2: FMRMC on small regular graphs

nodes | degree || max time graph min time graph
7 4 3.4761 1.1897
7 6 0.5581 0.5581
8 3 6.3292 @ 2.8854
8 4 2.8854 1.1344
8 5 1.9576 @ 0.9102
8 6 0.9102 % 0.9102
8 7 0.5139 0.5139
9 2 16.0765 O 16.0765

52



Complete computational results FMRMC on small regular graphs

Table A.2: FMRMC on small regular graphs

nodes | degree || max time graph min time graph
9 4 8.2117 1.4427
9 6 1.4427 0.8662
9 8 0.4809 0.4809
10 3 14.9392 2.4663
10 4 4.7185 1.5767
10 5 4.3522 1.1802
10 6 2.4663 0.9064
10 7 1.1802 0.7670
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Complete computational results FMRMC on small regular graphs

Table A.2: FMRMC on small regular graphs

nodes | degree || max time graph min time graph

10 8 0.7213 07213 | DN
Vi 2

10 9 0.4551 0.4551

11 2 24.1836 Q 24.1836

11 4 10.9225 1.5167

11 8 1.0195 0.6953

11 10 0.4343 0.4343

12 3 23.3497 2.4663
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Appendix B

Computional method

B.0.1 pysparse

Pysparse is the package [ used in my programs to calculate the eigensystems
for large matrices. Since the networks I did in the simulation are very large, it
is not easy to solve the eigensystems for these huge matrices very efficiently.
Pysparse is a Python software package for manipulating sparse matrices.
It can store symmetric matrices efficiently and includes the modules that im-
plement a Jacobi-Davidson eigenvalue solver for the symmetric, generalised
matrix eigenvalue problem (JDSYM).

The code example below illustrates the use of the new sparse matrix and
the way to use JSDYM.

import spmatrix,itsolvers,precon,jdsym

A=spmatrix.ll_mat_sym(5,5)
for i in range(5):

Al =i
A[3,0]= A[3,3]
tau=1.0

sol=jdsym.jdsym(A,M,K,5,tau,jdtol=1e—9,itmax=500,linsolver=itsolvers.qmrs)

The jdsym module function will return a tuple with four elements. The
second one are the eigenvalues and the third one is the eigenvectors. More
information and further code examples for Pysparse can be found in [ ]

and [ ]
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B.0.2 geng

Geng is a program to generate small graphs from the nauty package [ I
Under given constraints geng can generate all the different graphs (not includ-
ing isomorphic ones) satisfies the conditions. These graphs are in the format
of graph6. grapho is format for storing undirected graphs in a compact man-
ner, which is suitable for small graphs, using only printable ASCII characters.
Files in these formats have text type and contain one line per graph. There is
a stand-alone reader showg program which can convert them into adjacency
list, which can be easily convert to many other formats.

For example, if we want to generate all 10 nodes regular degree 3 connected
graphs, the command is as follows:

geng —c 10 —d3 —D3 | showg

Type the command in the console in Linux platform; the program will re-
turn the adjacency lists for all the connected regular 3 graphs of 10 nodes with-
out isomorphic ones.

B.0.3 sdpsol

The program sdpsol parses semidefinite programming (SDP) and determi-
nant maximization (MAXDET) problems expressed in the sdpsol language,
solve them using interior-point algorithms, and reports in a convenient form.
The MAXDET problem (including its special case, SDP) is a convex optimiza-
tion problem, i.e., the objective function is convex and the constraint set is
convex. I use this package in the program to find the fastest reversible Markov
chain in our combined fastest mixing problem. More detail can be found in

[ .

56



Appendix C

Program listings

C.0.4 Calculate the hitting time matrix

#!/usr/local/bin/python

# cat foo.dat | h_timel7.py

# this version is also suitable for multigraphs.

# Read the adjacency dictionary from stdin, print the hitting time matrix

import spmatrix,itsolvers,precon,jdsym,Numeric

import numarray as na

from math import sqrt,log,exp

from array import array

from sys import stdin,stderr,argv 10

def sqrtD(A):
degree,sqrtD=na.resize(na.array([0.0]),(n)) na.resize(na.array([0.0]),(n))
for i in range(n):
for j in range(n):
if Alij]'=0:
degree[i]+=Al[i,j]
if degree[i]!=0:
sqrtD[i]=sqrt(1.0/degreeli]) 20
return (degree,sqrtD)

def adjd2adjm(adj):
A=spmatrix.ll_mat_sym(n,n)
for node in adj:
for neighbour in adj[node]:
if node>=neighbour:
Alnode,neighbour]+=1
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return(A)

def h_time(A):
M,K=None,None
N=spmatrix.ll_mat_sym(n,n)
for j in range(n):
for i in range(j,n):
if sq[i] and sq[j] and Alij]:

NIi fl=sqli]*Aljl*sq(i

else:

N[i,j]=0
sol=jdsym.jdsym(N,M,K,n,1,jdtol=1e—9,itmax=500,linsolver=itsolvers.qmrs)
p=heapsort(sol[1])
Imbd=sol[1].tolist()
if abs(Imbd[1]-1)<1le—6:

sol=jdsym.jdsym(N,M,K,n,0.999999,jdtol=1e—9,itmax=500,linsolver=itsolvers.qmrs)
p=heapsort(sol[1])
Imbd=sol[1].tolist()
if abs(lImbd[1]—1)>1e—6:
v=na.transpose(sol[2].tolist())
H=spmatrix.ll_mat(n,n,n)
for k in range(n):
Imbdk=Imbd[k]
for i in range(n):

di=degreeli]

xki=v[p[K][i]

for j in range(n):

dj=degreelj]
xkj=vIp[klL]

if k!=0:
HI[j,iJ+=m*(xki**2/di—xki*xkj/sqrt(di*d;j))/(1—1mbdk)
return H
def downheap(a,p,v,n): # v is the start vertex

" helper function for heapsort ’

w=2*v+1 # first descendant of v

while w<n:
if w+l<n: # is there a second descendant?

if ajw+l]<a[w]: w+=1 # sort down
# w is the descendant of v with maximum label
if a[v]<=a[w]: return # v has the heap property
# otherwise
a[w],a[v]=a[v],a[w]
pwl.p[vl=p[v].p[w]
v=w; w=2*v+1 # continue

def heapsort(a): # sort a
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n=len(a)

p=li for i in range(n)]

for v in range(n/2—-1,-1,-1):
downheap(a,p,v.n)

for v in range(n—1,0,—1):
a[0],a[v]=a[v],a[0]
pl0].plv]=p[v].plO]
downheap(a,p,0,v)

return p # permutation

def printmatrix(a):
for i in range(n):
for j in range(n):
print '%8.3f  %al[ijl,” ,
print

def printvector(a):
n=len(a)
for i in range(n):
print '%8.3f  %ali],” ,
print

count=0
for line in stdin:
count+=1
adj=eval(line)
n=len(adj)
A=adjd2adjm(adj)
degree,sq=sqrtD(A)
m=sum(degree)
H=h_time(A)
if H!=None:
print 'adj%d=%s’ %(count,ad;)
print ’Hitting time matrix for graph%d:’ %count
printmatrix(H)
check=0
for node in adj:
for neighbour in adj[node]:
check+=H[node,neighbour]
print '%8.3f=?=%d" %(check,(n—1)*m)
else:
print 'pysparse erro with 2nd lambda=1'
print

59

80

90

100

110



Program listings

C.0.5 Calculate the mixing time of the network

#!/usr/local/bin/python

# This program reads the adjacency dictionary of the graph from stdin, then

# calculate the mixing rate and mixing time.

# geng -c 6 6:6 | showg -e | ./showg-e2adjl.py 2>/dev/null | ./mixingtime.py
# generate graphs | convert to showg format | generate the adjacency dictionary
# | read the adjacency dictionary to calculate the mixing time.

import spmatrix,itsolvers,precon,jdsym

from sys import stdin,stderr,argv

from math import sqrt,log 10
from commands import getstatusoutput

from numarray import array,resize

def adjd2adjm(adj): # convert the adjacency dictionary to adjacency matrix
A=spmatrix.ll_mat_sym(n,n)
N=spmatrix.ll_mat_sym(n,n)
degree=resize(array([0]),(n))
sqrtD=resize(array([0.0]),(n))
for node in adj:
degree[node]=len(adj[node]) 20
sqrtD[node]=sqrt(1.0/degree[node])
for neighbour in adj[node]:
if node>=neighbour:
Alnode,neighbour]+=1
for j in range(n): # generate the matrix N
for i in range(j,n):
if sqrtD[i] and sqrtD[j] and A[i,j]:
NIi jl=sqrtD[iJ*Afij/*sqrtD{j
NI f1=NTj ]
return (N,degree) 30

def mixing_rate(N): # find the mixing rate
M,K=None,None
taul=1.0
tau2=-1.0
soll=jdsym.jdsym(N,M,K,2,taul jdtol=1e—9,itmax=500,linsolver=itsolvers.qmrs)
sol2=jdsym.jdsym(N,M,K,1,tau2,jdtol=1e—9,itmax=500,linsolver=itsolvers.qmrs)
# find the second largest absolute of eigenvalues
mu=abs(max(abs(sol1[1][1]),abs(sol2[1][0])))
if mu<l—(1le—6) and mu>le—6: 40
m_rate=log(1/mu)
return m._rate
else: return O
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for line in stdin:
adj=eval(line)
n=len(adj)
N,degree=adjd2adjm(adj)
mrate=mixing_rate(N)

if mrate: 50
print 'mixing rate’ ,mrate
print ‘'mixing time ° ,1/mrate
else: print 'SLEM is out of range’
C.0.6 Fastest reversible mixing Markov chain
# KMB 2004 Jul 15
# fastest mixing reversible Markov chain
# geng 4 -c | showg -e -10 | fmrmc.py -v2
# geng 7 -c | showg -e -10 | fmrmc.py -vl | kw mixtime | histogram | p
# geng 8 -¢ -d3 -D3 | showg -e -10 | time fmrmc.py -vl | kw mixtime | histogram | p
#  Petersen: geng  -c 10 -d3 -D3 | showg -e -10 | time fmrmc.py
# line graph: geng 6 -c 5:5 -d1 -D2 | showg -e -10 | fmrmc.py
# geng 10 -c -d3 -D3| showg -e -10 | showg-e2dot.py > n10d3.dot
# mneato -Tps n10d3.dot > n10d3.ps
10
import re
import getopt
from sys import stdin,stderr,exit,argv
from copy import copy
from commands import getstatusoutput
from math import sqrt,log
# 0=>no output
# 1=>mixtime only
# 2=>even more 20
# 3=>everything
verbosity=0
sl=False # self-loops not allowed
maxng=10000000
try:
opts,args = getopt.getopt(argv[l:],’sv:n:’ ,['selfloops’ ,'verbosity’ ,maxng’ 1)
except getopt.GetoptError:
print >>stderr,’'Bad options’
exit(2) 30
for o,a in opts:
if o in ("-v" , "--verbosity" ):
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verbosity=int(a)

if o in ("-s" , "--selfloops" ):
sl=True # self-loops allowed
if o in ("-n" , "--maxng" ):

maxng=int(a)
print >>stderr,'maxng=%d’ %maxng

if sl: print >>stderr,’self-loops allowed’ 40
else: print >>stderr,’self-loops not allowed’

def writesdpprog(f,adj,aa,deg,sl=True,nu=10):
' aa=antiadjacency dict, sl=>self loops allowed '’
n=len(aa) # nodes
m=sum([n—len(aali]) for i in range(n)])/2  # links
f.write(""%% fastest mixing reversible Markov chain
%% automatically generated by fmrmc.py
%% deg=%s
%% adj=%s (indexed from 0) 50
%%MAXITER=100;
%%ABSTOL=1e-8;
%%RELTOL=1e-6;
%%BIGM=1000;
NU=%d;
n=%d;
variable s,P(n,n); %% these are indexed from 1
%%initialize s=5;
P.>-1e-14;\n™ %(str(deg),str(adj),nu,n))
# constraints. .. 60
for x in aa.keys():
for y in aa[x]:
if xl=y:
fwrite(  P(%d,%d)==0;\n’ %(x+1,y+1))
elif not sl: # x==y, and self-loops not allowed
fwrite( P(%d,%d)==0;\n’ %(x+1,y+1))
# initialization. ..
P=" initialize P=['
pi=' pi=[
q:’ q:[’ 70
Pih=" Pih=[
Pimh=" Pimh=[’
for x in range(n):
degx=deg|[x]
pi+="%.14g9,” %(0.5*degx/m)
q+='%.149,” Y%sqrt(0.5*degx/m)
for y in range(n):
if x==y:
Pih +='%.14g,” %(sqrt(0.5*degx/m))
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Pimh+="%.149," %(1.0/sqrt(0.5*degx/m)) 80
else:
Pih+="0,
Pimh+="0,
if y in aa[x]: # not yx
P+="0;
else: # y™x
P+='%.149," %(1.0/degx)
P=P[:-1]+; '
pi=pi[:—1]+;
q=q[:—-1]+; 90
Pih=Pih[:—1]+"; ’
Pimh=Pimh[:—1]+"; °
P=P[.-2]+;\n’
pi=pi[:—2]+]; %% pi=desired invariant distribution, Pi=diag(pi)\n’
q=q[:—2]+7;\n’
Pih=Pih[:—-2]+"]; %% Pi"(1/2)\n’
Pimh=Pimh[:—2]+']; %% Pi"(-1/2)\n’
f.write(P)
f.write(pi)
f.write(Pih) 100
f.write(Pimh)
f.write(q)
f.write(™
P*ones(n)==ones(n);
diag(pi)*P==P’ *diag(pi);
B=Pih*P*Pimh—q*q’;
B< s;
B>-s;
minimize XXXx=s;
) 110

def a2aa(a):
n=len(adj)
x=[i for i in range(n)]
aa=dict([(i,copy(x)) for i in range(n)])
for x in a:
for y in a[x]: aa[x].remove(y)
return aa

graph=re.compile(r”"Graph (\d+),’ ) 120
nm=re.compile(r’(\d+)\s+(\d+)’ )

ed=re.compile(r'\s*(?P<a>\d+)\s+(?P<b>\d+)’ )

ob=re.compile(r'xxxx\s+=\s+(?P<ob>.*)’ )

pm=re.compile(r” (?P<pm>\[.*?\])’ ,re. DOTALL|re. MULTILINE)

mintau= 1e300

maxtau=—1e300
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ng=0
ok=[]

while ng<maxng:
line=stdin.readline()
if not line: break
x=graph.match(line)
if x:
ng+=1
line=stdin.readline()
y=nm.match(line)
if not y: exit(1)
if verbosity and ng%1000==0: print >>stderr,ng
ve=tuple(map(int,y.groups())) # new graph, # vertices and # edges
if verbosity>1: print 'graph’ ,x.groups(0)[0],’ n=%d m=%d’ %ve
adj=dict([(i,[]) for i in range(ve[O])])
n=len(adj)
line=stdin.readline()
ne=0
while ne<ve[l]:
for e in re.finditer(ed,line):
ne+=1
a,b=int(e.group('a’ )),int(e.group(b’ ))
adj[a].append(b)
adj[b].append(a)
aa=a2aa(adj)
if verbosity>1: print * adjacency dictionary: ’ ,adj
if verbosity>2: print * antiadjacency dictionary: ’ ,aa
deg=[len(adj[i]) for i in range(n)]
Dmh=[sqrt(deg[i]) for i in range(n)]
Dh =[sqrt(1.0/deg[i]) for i in range(n)]
if verbosity>2: print 'deg=" ,deg,’ D*(-1/2)= ,Dmh
aa=a2aa(adj)
f=file(foo.sdp’ ,wW’ )
if n>=9: writesdpprog(f,adj,aa,deg,sl,3)
elif n>=7: writesdpprog(f,adj,aa,deg,sl,8)
elif n==6: writesdpprog(f,adj,aa,deg,sl,40)
elif n==4:
if ng==3: writesdpprog(f,adj,aa,deg,sl,3)
else: writesdpprog(f,adj,aa,deg,sl,3)
else: writesdpprog(f,adj,aa,deg,sl,4)
f.close()
s,0=getstatusoutput('sdpsol foo.sdp’ )
s=s>>8
if not s in [55,62] and verbosity>0:
print >>stderr,” sdpsol exit status=' S
if verbosity>2: print >>stderr,’ sdpsol output P=’ ,0
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m=ob.search(o)
if s in [55,62] and m:
# 55 seems to mean ok, 62=>FEASIBLE but might be NON-OPTIMAL after 100 iterations,
# sdpsol stopped because MAXIMUM NUMBER OF ITERATIONS exceeded.
mu=float(m.group('ob’ ))
if mu<1.0:
ok.append(ng) 180
tau=—1.0/log(mu)
if verbosity>1: print ° mu=%g’ %mu
if verbosity>0: print ' graph %d: mixtime=%g’ %(ng,tau)
if tau<mintau:
mintau=tau
mintaug=ng
mintauadj=copy(adj)
p=pm.search(o)
if p: mintauP=p.group('pm’ )
else: mintauP=o 190
if tau>maxtau:
maxtau=tau
maxtaug=ng
maxtauadj=copy(adj)
p=pm.search(o)
if p: maxtauP=p.group(pm’ )
else: maxtauP=o

else:
print >>stderr,'graph %d: mu=%g >= 1" %(ng,mu)
elif verbosity>1 and not s in [55,62]: # some problem with sdpsol 200

if s in [255]:

print 'sdpsol problem: (fatal) equality constraints given are inconsistent.’
else:

print 'sdpsol problem:’

print o

print >>stderr,'%d graphs processed, nok=%d’ %(ng,len(ok))
if verbosity>O0:
print >>stderr,'ok=" ok

210
def stats(f):
if mintau<1e100:
f.write("\nminimum fastest mixing time=%g\n’ %mintau)
f.write(minimum fastest mixing graph number=%d\n’ %mintaug)
f.write('minimum fastest mixing graph = %s\n’ Y%str(mintauadj))
f.write('minimum fastest mixing sdpsol output P=\n’ )
f.write(mintauP)
f.write(\n’ )
if maxtau>—1e100:
f.write(\nmaximum fastest mixing time=%g\n’ %maxtau) 220
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f.write('maximum fastest mixing graph number=%d\n’ %maxtaug)
f.write(maximum fastest mixing graph = %s\n’ Y%str(maxtauadj))
f.write('maximum fastest mixing sdpsol output P=\n’ )

f.write(maxtauP)
f.write(\n’ )

stats(stderr)
if sl: print >>stderr, self-loops were allowed’
else: print >>stderr,’self-loops were not allowed’

C.0.7 Generate the graphs from the ST (n, m) model

from RandomArray import poisson

def adjd4swnm(n,m):
adj=dict([(i,[(i+n—1)%n,(i+1)%n]) for i in range(n)])
ncl=0
while ncl<m:
a,b=randint(0,n—1),randint(0,n—1)
if al=b and a!=(b+n—1)%n and a!=(b+1)%n:
adj[a].append(b)
adj[b].append(a)
ncl+=1
return adj

C.0.8 Generate the graphs from the SW{n, p} model

from random import randint

def adjd4swnp(n,p):
meanm=n*(n—1)*p/2
mvec=poisson(meanm,[200])
adj=[]
for m in mvec:
adj.append(adjd4swnm(n,m))
return adj
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