Optimal trip planning in transport systems with random delays

Keith Briggs \& Peter Kin Po Tam
Mobility Research Centre, BT Innovate \& Design http://keithbriggs.info
BT@

MoN9, St Andrews
2010-06-18 1400

BT Research－Adastral Park

Optimizing departure time

The primary problem:

- Given:

1. The time a passenger would like to reach the destination
2. The probability that a passenger would like to reach the destination on time (a high probability if it is a time-critical trip or a smaller probability if it is less important)

- Find:

1. The best route
2. The latest time the passenger should start from the first train station

Let

- τ be the time the passenger would like to reach the destination
- ϵ be the probability that the passenger would like to reach the destination "on time"
- t_{d} be the time the passenger departs from the first station
- T_{a} be the time the passenger arrives at the destination (arrival time)
Then the optimization problem is:

$$
\begin{aligned}
\max & t_{d} \\
\text { subject to } & \operatorname{Prob}\left[T_{a}>\tau\right]<1-\epsilon
\end{aligned}
$$

Modelling train delay

In order to calculate $\operatorname{Prob}\left[T_{a}>\tau\right]$, we will need to solve the following secondary problem:

- Given:

1. A route
2. A timetabled service for each train
3. A model of the distribution of delays for each train
4. A model of the distribution of starting time of the passenger

- Find:

1. The probability distribution of the arrival time T_{a} for the passenger at the destination

Assumptions and notations

Assumptions:

- The departure times of any two trains are statistically independent
- The order of the departure for trains may vary due to delay
- When changing trains, passengers always catch the first train that departs to their next station on their chosen route

Notation:

$X_{i} \sim f_{i}$ probability distribution function (pdf)
F_{i} cumulative distribution function (cdf)

$$
\begin{gathered}
F_{i}(t)=\int_{-\infty}^{t} f_{i}(x) d x \\
\llbracket x \geqslant t \rrbracket= \begin{cases}1 & \text { if } x \geqslant t, \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

The q-exponential law

- Exponential law: $f_{\beta}(x) \propto \exp (-\beta x)$
- $e_{r, \beta}(x):=Z\left(1+\frac{\beta x}{r}\right)^{-r}, \beta>0, r>1$
- $Z:=\beta\left(1-\frac{1}{r}\right)$
- mean $\mu:=\frac{1}{\beta\left(1-\frac{2}{r}\right)}$
- $\lim _{r \rightarrow \infty} e_{r, \beta}(x)=Z \exp (-\beta x)$
- small r gives a power-law (long tail)
- The departure times for every trains can be modelled by q-exponential distribution by some parameters β and r.

Birmingham, all departures

$$
\begin{aligned}
& r=3.8 \\
& \beta=0.33
\end{aligned}
$$

Coventry to Birmingham

$$
\begin{aligned}
& r=9.0 \\
& \beta=0.21
\end{aligned}
$$

The discrete q-exponential model

- The discrete q-exponential model is more suited for the train model since the departure times of trains are considered in minutes
- Bins have length $\mathrm{d} t$, typically one minute
- The values for each bin are calculated using the CDF of the continuous model, i.e. $\int_{a}^{a+\mathrm{d} t} e_{r, \beta}(x) \mathrm{d} x$ where a is the value of the bin
- The distribution is truncated; the departure delay cannot be <0 or greater than some maximum

Stochastically short paths

- Given a graph with RVs as edge weights and two nodes, we could:
- minimize expected time to travel between the nodes
- find a route which maximizes the probability that it is shortest
- find the route of shortest mean time, subject to some condition on the variance
- ...

The problem formalized

- Given: a weighted digraph g, a timetable $\mathrm{TT}\left(n_{0}, n_{1}\right)$ for each arc $\left(n_{0}, n_{1}\right) \in g$, a final arrival time T_{a}, and parameters $\tau>0, \epsilon>0$.
- To find: a route ρ and maximal departure time t such that $\operatorname{Prob}[$ arrival after $\alpha+\tau]<\epsilon$

Short paths in a weighted digraph

Bath to Manchester, shortest mean time

time=233

Bath to Manchester, second shortest mean time

Transformation using kernel

- The departure time of the passenger at the initial station is modelled as a probability distribution
- We need to compute the probability distribution model for the arrival time of the passenger at the next station

$$
A_{0} \underset{K_{0}}{\longrightarrow} A_{1} \underset{K_{1}}{\longrightarrow} \ldots \underset{K_{r-1}}{\longrightarrow} A_{r}
$$

A_{i} is the probability distribution of arrival time i.
K_{i} represents the set of probability distributions of departure times of each train at station i and we will call it the kernel.

Aside: order statistics

Let $X_{i} \sim f, i=0, \ldots, n-1$ be iid. Define $X_{(0)}$ to be the minimum X_{i}. We compute the pdf $f_{(0)}$ of $X_{(0)}$:

$$
\begin{aligned}
f_{(0)}(x) \mathrm{d} x & =\operatorname{Prob}\left[X_{(0)} \in \mathrm{d} x\right] \\
& =\operatorname{Prob}\left[\text { one } X_{i} \in \mathrm{~d} x, \text { others }>x\right] \\
& =\sum_{i} \operatorname{Prob}\left[X_{i} \in \mathrm{~d} x, X_{j}>x\right] \\
& =\sum_{i \neq i} \operatorname{Prob}\left[X_{i} \in \mathrm{~d} x\right] \operatorname{Prob}\left[X_{j}>x\right] \\
f_{(0)}(x) & =\sum_{i} f(x) \prod_{j \neq i}(1-F(x)) \\
& =n f(x)(1-F(x))^{n-1}
\end{aligned}
$$

The continuous time model

Let $K_{(0 \mid t)}(x)$ be the probability density of departing at time x given that the passenger arrives at time t.

$$
\begin{aligned}
& K_{(0 \mid t)}(x) \mathrm{d} x=\llbracket x>t \rrbracket \operatorname{Prob}\left[X_{(0 \mid t)} \in \mathrm{d} x\right] \\
&=\llbracket x>t \rrbracket \operatorname{Prob}\left[\text { one } X_{i} \in \mathrm{~d} x, \text { others }>x \text { or } \leqslant t\right] \\
&=\llbracket x>t \rrbracket \sum_{i} \operatorname{Prob}\left[X_{i} \in \mathrm{~d} x, X_{j}>x \text { or } \leqslant t\right] \\
& j \neq i \\
&=\llbracket x>t \rrbracket \sum_{i} \operatorname{Prob}\left[X_{i} \in \mathrm{~d} x\right] \operatorname{Prob}\left[X_{j}>x \text { or } \leqslant t\right] \\
& j \neq i \\
& K_{(0 \mid t)}(x)=\llbracket x>t \rrbracket \sum_{i} f_{i}(x) \prod_{j \neq i}\left(1-F_{j}(x)+F_{j}(t)\right)
\end{aligned}
$$

Integral transforms

$$
A_{n}(x)=\int_{-\infty}^{\infty} A_{n-1}(t) K_{(n-1 \mid t)}(x) \mathrm{d} t, n=1,2, \ldots
$$

- Exact results (and agree with simulation)
- Integrals cannot be done analytically
- The amount of computer time needed to calculate $A_{i}(x)$ increases dramatically as i increases

Continuous model simulation for catching one train

The discrete time model

Let T be the set of all trains, t be the time passenger arrives at the station and x be the time the passenger departs.

$$
\begin{aligned}
K_{(0 \mid t)}(x) & =\llbracket x>t \rrbracket \operatorname{Prob}\left[X_{(0 \mid t)}=x\right] \\
& =\llbracket x>t \rrbracket \operatorname{Prob}\left[\text { at least one } X_{i}=x, \text { others }>x \text { or } \leqslant t\right]
\end{aligned}
$$

Let T be the set of trains departing after time t; then

$$
\begin{aligned}
K_{(0 \mid t)}(x) & =\llbracket x>t \rrbracket \sum_{\emptyset \neq S \subseteq T} \operatorname{Prob}\left[{\underset{i}{i} S}^{X_{i}}=x, \underset{j \notin S}{X_{j}>x} \text { or } \leqslant t\right] \\
& =\llbracket x>t \rrbracket \sum_{\emptyset \neq S \subseteq T} \operatorname{Prob}\left[{\underset{i}{i \in S}}_{X_{i}}=x\right] \operatorname{Prob}\left[X_{j}>x \text { or } \leqslant t\right] \\
& =\llbracket x>t \rrbracket \sum_{\emptyset \neq S \subseteq T} \prod_{i \in S} f_{i}(x) \prod_{j \notin S}\left(1-F_{j}(x)+F_{j}(t)\right)
\end{aligned}
$$

Matrix multiplication

$$
\text { Let } K_{0}=k_{i j}^{(0)}=\left(K_{(0 \mid j)}(i)\right) \text {, then }
$$

$$
\begin{aligned}
& A_{1}=K_{0} A_{0} \\
& A_{2}=K_{1} A_{1}=K_{1} K_{0} A_{0} \\
& \ldots \\
& A_{n}=K_{n-1} \ldots K_{0} A_{0}
\end{aligned}
$$

- Kernel and the distribution of arrival time can be considered as matrix and vector
- Finding the distribution of the arrival time at the next station is exactly the same as matrix multiplication
- Matrix calculations are generally much quicker than integration

Discrete model simulation for catching one train

CDF for journey times from Ipswich to Manchester

References

- K M Briggs \& C Beck, Modelling train delays with q-exponential functions Physica A 378, 498-504 (2007).
- H A David, Order statistics Wiley (1970).
- J. Loughry \& J.I. van Hemerty \& L. Schoofsz Efficiently Enumerating the Subsets of a Set http://applied-math.org/subset.pdf, (2000).
- F. Ruskey Combinatorial Generation http://www.1stworks.com/ref/RuskeyCombGen.pdf, (2003)
- D. Sethi, Optimal railway-trip planning University of York, (2009).

