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Optimizing departure time

The primary problem:
• Given:

1. The time a passenger would like to reach the
destination

2. The probability that a passenger would like to reach
the destination on time (a high probability if it is a
time-critical trip or a smaller probability if it is less
important)

• Find:

1. The best route
2. The latest time the passenger should start from the

first train station
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Let

• τ be the time the passenger would like to reach the destination

• ε be the probability that the passenger would like to reach the
destination “on time”

• td be the time the passenger departs from the first station

• Ta be the time the passenger arrives at the destination
(arrival time)

Then the optimization problem is:

max td
subject to Prob[Ta>τ ]<1−ε
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Modelling train delay

In order to calculate Prob[Ta>τ ], we will need to solve the
following secondary problem:
• Given:

1. A route
2. A timetabled service for each train
3. A model of the distribution of delays for each train
4. A model of the distribution of starting time of the

passenger
• Find:

1. The probability distribution of the arrival time Ta for
the passenger at the destination
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Assumptions and notations
Assumptions:

• The departure times of any two trains are statistically
independent

• The order of the departure for trains may vary due to delay

• When changing trains, passengers always catch the first train
that departs to their next station on their chosen route

Notation:

Xi∼fi probability distribution function (pdf)

Fi cumulative distribution function (cdf)

Fi(t)=
∫ t

−∞
fi(x)dx

[[x>t]]=
{

1 if x>t,
0 otherwise
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The q-exponential law

• Exponential law: fβ(x)∝ exp(−βx)
• er,β(x):=Z(1+ βx

r )−r, β>0, r>1
• Z :=β(1− 1

r )
• mean µ:= 1

β(1− 2
r
)

• limr→∞ er,β(x)=Z exp(−βx)
• small r gives a power-law (long tail)

• The departure times for every trains can be modelled by
q-exponential distribution by some parameters β and r.
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Birmingham, all departures
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Coventry to Birmingham

r=9.0
β=0.21
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The discrete q−exponential model

• The discrete q−exponential model is more suited for the train
model since the departure times of trains are considered in
minutes

• Bins have length dt, typically one minute

• The values for each bin are calculated using the CDF of the
continuous model, i.e.

∫ a+dt
a er,β(x) dx where a is the value

of the bin

• The distribution is truncated; the departure delay cannot be
<0 or greater than some maximum
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Stochastically short paths

• Given a graph with RVs as edge weights and
two nodes, we could:

• minimize expected time to travel between the nodes
• find a route which maximizes the probability that it is shortest
• find the route of shortest mean time, subject to some

condition on the variance
• . . .
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The problem formalized

• Given: a weighted digraph g, a timetable
TT(n0, n1) for each arc (n0, n1)∈g, a final
arrival time Ta, and parameters τ>0, ε>0.

• To find: a route ρ and maximal departure time t
such that Prob[arrival after α+τ ]<ε
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Short paths in a weighted digraph
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Bath to Manchester, shortest mean time
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Bath to Manchester, second shortest mean time
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Transformation using kernel

• The departure time of the passenger at the initial station is
modelled as a probability distribution

• We need to compute the probability distribution model for the
arrival time of the passenger at the next station

A0−→
K0

A1−→
K1

... −→
Kr−1

Ar

Ai is the probability distribution of arrival time i.

Ki represents the set of probability distributions of departure times

of each train at station i and we will call it the kernel.
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Aside: order statistics

Let Xi∼f , i=0, . . . , n−1 be iid. Define X(0) to be the minimum
Xi. We compute the pdf f(0) of X(0):

f(0)(x)dx=Prob[X(0)∈dx]

=Prob[one Xi∈dx, others >x]

=
∑
i

Prob[Xi∈dx,Xj
j 6=i
>x]

=
∑
i

Prob[Xi∈dx]Prob[Xj
j 6=i
>x]

f(0)(x)=
∑
i

f(x)
∏
j 6=i

(1−F (x))

=nf(x)(1−F (x))n−1
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The continuous time model

Let K(0|t)(x) be the probability density of departing at time x
given that the passenger arrives at time t.

K(0|t)(x)dx=[[x>t]]Prob[X(0|t)∈dx]

=[[x>t]]Prob[one Xi∈dx, others >x or 6t]

=[[x>t]]
∑
i

Prob[Xi∈dx,Xj
j 6=i
>x or 6t]

=[[x>t]]
∑
i

Prob[Xi∈dx]Prob[Xj
j 6=i
>x or 6t]

K(0|t)(x)=[[x>t]]
∑
i

fi(x)
∏
j 6=i

(1−Fj(x)+Fj(t))
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Integral transforms

An(x)=
∫ ∞
−∞

An−1(t)K(n−1|t)(x)dt, n=1, 2, ...

• Exact results (and agree with simulation)

• Integrals cannot be done analytically

• The amount of computer time needed to calculate Ai(x)
increases dramatically as i increases



BT Research The optimization problem Short paths Transforms References

Continuous model simulation for catching one train
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The discrete time model

Let T be the set of all trains, t be the time the passenger arrives at
the station and x be the time the passenger departs.

K(0|t)(x)=[[x>t]]Prob[X(0|t)=x]

=[[x>t]]Prob[at least one Xi=x, others >x or 6t]

Let T be the set of trains departing after time t; then

K(0|t)(x)=[[x>t]]
∑
∅6=S⊆T

Prob[Xi
i∈S

=x, Xj
j /∈S

>x or 6t]

=[[x>t]]
∑
∅6=S⊆T

Prob[Xi
i∈S

=x]Prob[Xj
j /∈S

>x or 6t]

=[[x>t]]
∑
∅6=S⊆T

∏
i∈S

fi(x)
∏
j /∈S

(1−Fj(x)+Fj(t))
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Matrix multiplication

Let K0=k(0)
ij =(K(0|j)(i)), then

A1=K0A0

A2=K1A1=K1K0A0

...

An=Kn−1...K0A0

• Kernel and the distribution of arrival time can be considered
as matrix and vector

• Finding the distribution of the arrival time at the next station
is exactly the same as matrix multiplication

• Matrix calculations are generally much quicker than
integration
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Discrete model simulation for catching one train
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CDF for journey times from Ipswich to Manchester
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