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Arithmetic

F can we compute with elements of R (an infinite complete ordered
field) on a machine with only finite resources?

. answer: to some extent

F we have to give up something - computability, accuracy, ordering,
. . .

. computability - some things may in principle be uncomputable

. accuracy - we may incur a small error in each operation, and these errors may
accumulate

. ordering - if x and y are computed results, we may no longer be able to
determine whether x < y or not

F I claim that for work in dynamical systems, we do not want to
give up the ordering property

. . . . but little attention has been paid to software with this property
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Floating point with Maple

F example: sin(6303769153620408×2971)

F Maple 9 & 10 evalf[digits](sin(6303769153620408*2^971));:
. evalf[ 10](...) gives -0.8021127471
. evalf[ 20](...) gives -0.9482478427. . .
. evalf[ 50](...) gives 0.3915937923. . .
. evalf[200](...) gives -0.3887412074. . .

F not a bug!

F hysteresis!!

F with mpfs (http://keithbriggs.info/mpfs.html):

sin(6303769153620408*2^971)=0.1600997259 +or- 9.8e-29
sin(6303769153620408*2^971)>0?: True
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Computer arithmetic - a layered model

hardware:

F 0: fixed-size integers

F 1: floating point

software:

F 2: arbitrary-size integers (GMP)

F 3: double or quad size floats (e.g. doubledouble)

F 4: arbitrary (but fixed) size floats with exact rounding (MPFR)

F 5: arbitrary (but fixed) size floats with error propagation (mpfre)

F 6: dynamically-sized floats with automatic recomputation (various
strategies exist; e.g. mpfs)
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Computer arithmetic - hardware layer

F integers: typically 32 or 64 bits, +,−, ∗ exact if result in range

F floating point: typically 53-bit mantissa, 11-bit exponent

F IEEE 754 property (round-to-nearest): if ◦ ∈ {+,−, ∗, /}, then
fl(x◦y) = (x◦y)(1+δ), where |δ| < u, u = 2−p (p = precision in
bits, subject to no underflow or overflow)

F . . . in other, words, the relative error is bounded

F even more useful: fl(x◦y) = (x◦y)/(1+δ), |δ| 6 u

F we can in principle propagate errors using these formulas, by
computing bounds on the absolute error for each step

F . . . but in practice it’s difficult and slow as we have to constantly
switch the rounding mode
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Computer arithmetic - software integers and floats

F integers are easy to represent, but it’s hard to design fast
algorithms

F multiplication: for n bits, the simple algorithm takes O(n2) time;
Karatsuba is O(nlog(3)/ log(2)); Toom 3-way is O(nlog(5)/ log(3)); FFT is
O(nlog(k)/ log(k−1)),k =3, 4, 5, . . . ; faster methods (Bernstein) . . . ?

F NB: above estimates determine the ultimate efficiency of every-
thing we do

F state-of-the-art: GMP http://gmplib.org

F floating-point (correctly rounded to nearest, up or down): MPFR
http://www.mpfr.org (builds on GMP)
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Error propagation

F definitions: exact number x̌, computed approximation x, error
bound δx > |x−x̌|, mantissa precision px, exponent ex, unit
roundoff ux = 2ex−px (for x 6= 0), N=round-to-nearest

F z = N (x±y): δz 6 uz/2+δx+δy

F z = N (x∗y): δz 6 uz/2+(1+δy2−ey)|y|δx+(1+δx2−ex)|x|δy

F z = N (x1/2): δz 6 uz/2+δx/(x1/2(1+(1−21−px)1/2))

F z = N (log(x)): δz 6 uz/2+δx/x

F and so on - difficult cases include asin near ±1

F implemented in an mpfre layer: floating point real + error bound

F typically 32 bits are enough for the error bound

F tradeoffs are possible here - tighter bounds need more computing
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Data flow example

F find the sign of one root x = −b+
√

b2−4ac
2a of the quadratic

ax2+bx+c = 0

a

**  b

sqr

- 

c

*   

2 4

output

/

-

sqrt

. input nodes don’t know how much precision to send

. all input nodes send data, even if it eventually may not be needed

. to recalculate requires the whole tree to be re-evaluated
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mpfs keithbriggs.info/mpfs.html

F The method is a stochastic variation of exact real arithmetic. The
novelty is a way to avoid the 1-bit graininess

F the complete DAG is stored

F nodes cache the most precise value so far computed

F lazy: compute-on-demand
. heuristic: when output error bounds are too big (e.g. to decide an inequality),

we add precision to intermediate steps in random places, and recompute
. cf. TCP

F the intermediate value at each node is a floating-point approx-
imation x and absolute error bound δ. The interval [x−δ, x+δ]
always strictly bounds the correct result, and will be refined
automatically as necessary

F user interface design: hide all internals, so that user just calls
functions in the normal way

Keith Briggs Reliable real arithmetic and one-dimensional dynamical systems 9 of 24

keithbriggs.info/mpfs.html


Classical theory of continued fractions

F regular continued fractions are symbolic dynamics of the Gauss
map:

g(x) = 1/x−b1/xc for x ∈ (0, 1]
where the digit xk (partial quotient) output at the kth iteration is
b1/xc

F we write x = [x1, x2, x3, . . . ], where xk ∈ {1, 2, 3, . . . }

F the continued fraction is finite iff x is rational

F for almost all x, the digit i occurs with relative frequency µ(i) ≡
log2

[
(i+1)2

i(i+2)

]
F the continued fraction is eventually periodic iff x is a quadratic

irrational
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An algorithm for continued fractions 1

F motivation - statistical studies of distribution of partial quotients

F many strategies are possible, but those offering guaranteed output
are typically much slower than otherwise

F consider first rationals n/d > 1:
while d > 0 do

q ← bn/dc
output partial quotient q
(n, d)← (d, n−qd)

end while

F most time is spent in the division step

F we should be able to speed this up, as we know that usually q is
small
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Doing the division fast

F definition: a limb is a word (block of 32 or 64 bits in a hardware
integer) of a multi-word integer

F theorem (Zimmermann): Divide the 2 most significant limbs of n
by the most significant limb of d. This will yield either q, q+1 or
q+2 where q is the exact quotient

F theorem (Granlund and Möller): Divide the 3 ms limbs of n by the
2 ms limbs of d. This yields q with very high probability (q+1 is
produced only with probability 2−32 or 2−64)

F Correcting the result:
while n−qd < 0 do

q ← q−1
end while

F NB: for our continued fraction application, we will abort if q is
greater than the word size. If we do not abort, the only multi-word
operation is the multiplication in n−qd. But this is linear in the
size of d. Thus, everything is fast.
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An algorithm for continued fractions 2

F for an arbitrary computable irrational x, I construct rational lower
(n/d) and upper (n′/d′) bounds using mpfr, by rounding down and
up and extracting the mantissa and exponent

F I then compute the continued fraction of (n/d) and (n′/d′), using
the above algorithm. As long as the partial quotients agree, they
are the correct partial quotients of x

F typical scaling of the running time:
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More theory

F [8, p226] gives a formula for relative frequency of the m-block
i = (i1, i2, . . . , im) which holds as n→∞ for almost all irrationals:

card{κ : (xκ, . . . , xκ+m−1) = i , 1 6 κ 6 n}/n =

log2

[
1+v(i)
1+u(i)

]
+o

(
n−1/2 log(3+ε)/2(n)

)
∀ε > 0 and where (with [i] = pm/qm for the m-block i)

u(i) =

{
pm+pm−1
qm+qm−1

if m is odd
pm

qm
if m is even

v(i) =

{
pm

qm
if m is odd

pm+pm−1
qm+qm−1

if m is even
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Yet more theory

F note that µ(i) is unchanged if we reverse the block i, whatever
the length. I do not know what other symmetries exist

F if a particular x has all blocks occurring with these expected
frequencies, we call x normal

F note that because of the rapid decay of correlations (approxi-
mately (−0.3)n at lag n), there is not much point in studying
very long blocks (n > 5, say). For long blocks, the two ends are
effectively independent. This makes an empirical study such as
the present one feasible

F of course, we can never prove abnormality (if it exists) merely by
a statistical analysis of a finite portion of the infinite continued
fraction. However, we might hope to find evidence of abnormality,
which can then be proven by other methods
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Literature survey

F [2] examines the frequency of digits amongst the first 1000 of
several cubic irrationals

F [3] examines the frequency of digits amongst the first 200000 of
several algebraic irrationals

F none of the above papers find any evidence of abnormality
amongst the numbers examined

F in [7], we have the result

Pr [xn = r & xn+k = s] = Pr [xn = r] Pr [xn+k = s]
(
1+O(qk)

)
,

where q ≈ −0.303663 is the Gauss-Kuzmin-Wirsing constant. But
this is too weak to allow explicit statistical tests

F no papers look at the distribution of blocks of length > 1
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Explicit examples of abnormal numbers

F all quadratic irrationals, e.g. 21/2 = 1+[2, 2, 2, 2, . . . ]

F I1(2)/ I0(2) = [1, 2, 3, 4, . . . ] (ratio of modified Bessel functions)

F I1+a/d(2/d)/ Ia/d(2/d) = [a+d, a+2d, a+3d, . . . ]

F tanh(1) = [1, 3, 5, 7, . . . ]

F exp(1/n) = [1, n−1, 1, 1, 3n−1, 1, 1, 5n−1, . . . ]; n = 1, 2, 3 . . .

F exp(2) = 7+[2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, 1, 1, 9, 42, 11, 1, 1, 12, 54, . . . ]

F exp(2/(2n+1)); n = 1, 2, 3 . . .

F
∑∞

k=1 2−bkφc = [20, 21, 21, 23, 25, 28, 213, . . . ]; φ = (
√

5−1)/2
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Method

F I calculate a few million digits for several cubic irrationals and a
few other irrationals

F I count exactly the observed frequency of all blocks of lengths
1,2,3,4,5

F I calculate a Pearson χ2 test statistic which measures the deviation
of the observed frequencies from the expected frequencies

F because the number of degrees of freedom ν is so large (typ-
ically several thousand), a normal approximation is sufficiently
accurate. The transformation is Z ≡

√
2χ2−

√
2ν−1. Under the

assumption of normality (of the cf of x!), Z is distributed N(0, 1)

F I plot this Z for blocks of length 1 (red), 2 (green), 3 (dark blue),
4 (light blue), 5 (violet) as a function of the number of digits
computed. We are looking for large deviations (say, > 3) away
from zero as a sign of abnormality
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Pearson χ2 results: 21/3 and 31/3
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Autocorrelation of digits

F we would expect the the autocorrelation function (acf) of any
analytic function of the digits that has a finite mean (for example,
the log or the reciprocal) would decay like qk at lag k, where
q ≈ −0.3 is Wirsing’s constant

F this is investigated in the following graphs. I plot log10 of the
absolute value of the acf as a function of lag. The green line has
the Wirsing slope

F it is known that for almost all x, the mean of the digits does not
exist. However, the mean of the log and mean of the reciprocal
do exist and are approximately 0.98784905683381078769204 and
1.7454056624073468 respectively. All my examples give results
consistent with these

F similarly for the mean of (xj)−k, k = 2, 3, 4, . . . , 10
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acf estimation difficulties

F for the AR(1) process x(t+1) = αx(t)+ε, |α| < 1, the exact acf at
lag k is ρ(k) = αk

F but the usual acf estimator r for a sample of size n has variance

var [rn(k)] =
1
n

[
(1+α2)(1+α2k)

1−α2 −2kα2k
]

F more generally, for a process whose acf decays for large k in
the same exponential fashion, we have approximate variance
var [rn(k)] = 1

n

[
1+α2

1−α2

]
for large k

F I expect my process to conform to this behaviour, and if it does,
putting in the numbers gives an estimator of k = 6 for the largest
k for which the acf estimates are meaningful
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Autocorrelation of logs of digits: 21/3 and 31/3
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