Notes on the Riemann hypothesis and abundant numbers

Keith Briggs
Keith.Briggs@bt.com
more.btexact.com/people/briggsk2/

2005 April 21 14:27

RH_abundant.tex ('NOTES' OPTION) TYPESET IN PDFLATEX ON A LINUX SYSTEM

Introduction

* In [1], Lagarias showed the equivalence of the Riemann hypothesis (RH) to a condition on harmonic sums, namely

$$
\mathrm{RH} \Leftrightarrow \sigma(n) \leqslant H_{n}+\exp \left(H_{n}\right) \log \left(H_{n}\right) \forall n
$$

* Robin [3] had already shown that

$$
\mathrm{RH} \Leftrightarrow \sigma(n) / n<e^{\gamma} \log \log (n) \quad \text { for } \quad n>5040
$$

which is probably more convenient for numerical tests

* so to disprove RH, we need to find n with large $\sigma(n) / n$

Notation

* n is always a positive integer; p is always a prime
$\star p_{i}=i$ th prime $\left(p_{1}=2, p_{2}=3, \ldots\right)$
\star harmonic sum for $n \geqslant 1$ is $H_{n}=\sum_{i=1}^{n} i^{-1}$
\star sum of divisors is $\sigma(n)=\prod_{i} \frac{p_{i}^{a_{i}+1}-1}{p_{i}-1}$ for $n=\prod_{i} p_{i}^{a_{i}}, \quad\left(a_{i}>0\right)$
$\star \sigma(n) / n=\prod_{i} \frac{p_{i}-p_{i}^{-a_{i}}}{p_{i}-1}$
\star I define $\rho(n) \equiv \sigma(n) / n$
$\star e^{\gamma}=1.78107241799019798523650410310717954 \ldots$, where γ is Euler's constant
* we will deal with n too large to represent in the computer $\left(\approx 10^{\left(10^{10}\right)}\right)$, but luckily we have its prime factorization which suffices

Superabundant numbers [2]

* n is superabundant (SA) if $\sigma(k) / k<\sigma(n) / n$ for all $k<n$
\star if $n=2^{a_{2}} 3^{a_{3}} \ldots m^{a_{m}}$ is SA, where m is the maximal prime factor, then $a_{2} \geqslant a_{3} \geqslant \cdots \geqslant a_{m}$
\star if $1<j<i \leqslant m$, then $\left|a_{i}-\left\lfloor a_{j} \log _{i} j\right\rfloor\right| \leqslant 1$
* $a_{m}=1$ unless $n=4$ or 36
$\star i^{a_{i}}<2^{a_{2}+1}, i \geqslant 2$
* $m \sim \log (n)$
\star SA numbers, with CA numbers in red: $2,2^{2}, 2.3,2^{2} .3,2^{3} .3,2^{2} .3^{2}, 2^{4} .3,2^{2} .3 .5 \ldots$

The work of Robin [3]

* Theorem: $\mathrm{RH} \Leftrightarrow \rho(n)<e^{\gamma} \log \log (n)$ for $n>5040$
* Theorem: independently of RH, except for $n=1,2,12$:

$$
\rho(n)<e^{\gamma} \log \log (n)+\frac{\left[7 / 3-e^{\gamma} \log \log (12)\right] \log \log (12)}{\log \log (n)}
$$

The numerator in the last term is about 0.6482
\star But note $\lim \sup _{n \rightarrow \infty} \frac{\sigma(n)}{n \log \log (n)}=e^{\gamma}$

The structure of the set of CA numbers

* Defn: n is colossally abundant (CA) if there exists $\epsilon>0$ such that

$$
\sigma(n) / n^{1+\epsilon} \geqslant \sigma(k) / k^{1+\epsilon} \quad \forall k>1
$$

* Robin [3] has given the following precise description, due originally to Erd"́s \& Nicolas [6]
* we first form the set E of critical ϵ values:

$$
\begin{aligned}
E_{p} & \equiv \bigcup_{\alpha=1,2,3, \ldots}\left\{\log _{p}\left(1+\frac{1}{\sum_{i=1}^{\alpha} p^{i}}\right)\right\} \\
E & \equiv \bigcup_{p} E_{p}
\end{aligned}
$$

* we label the elements of E in decreasing order: $\epsilon_{1}=\log _{2}(3 / 2)>\epsilon_{2}=\log _{3}(4 / 3)>\epsilon_{3}=\log _{2}(7 / 6)>\ldots$

The structure of the set of CA numbers cotd.

(a) if $\epsilon \notin E, \sigma(n) / n^{1+\epsilon}$ has a unique maximum attained at the number n_{ϵ} with prime exponents given by

$$
a_{p}(\epsilon)=\left\lfloor\log _{p}\left(\frac{p^{1+\epsilon}-1}{p^{\epsilon}-1}\right)\right\rfloor-1
$$

(b) if ϵ satisfies $\epsilon_{i+1}<\epsilon<\epsilon_{i}$ for $i=1,2,3, \ldots$, then n_{ϵ} is constant and we call it N_{i}. We have $N_{1}=2, N_{2}=6, \ldots$
(c) if the sets E_{p} are pairwise disjoint (which is likely, but not certainly known), then the set of CA numbers is equal to the set of $N_{i}, i=1,2,3, \ldots$ If this is the case, $\sigma(n) / n^{1+\epsilon}$ attains its maximum at the two points N_{i} and N_{i+1}
(d) if the sets E_{p} are not pairwise disjoint, then for each $\epsilon_{i} \in E_{q} \cap E_{p}, \sigma(n) / n^{1+\epsilon_{i}}$ attains its maximum at the four points $N_{i}, q N_{i}, r N_{i}$ and $N_{i+1}=q r N_{i}$

Alaoglu \& Erdős [2]

* these authors have a slightly stronger definition:

夫 Defn: n is colossally abundant if

$$
\begin{aligned}
& \sigma(n) / n^{1+\epsilon}>\sigma(k) / k^{1+\epsilon} \text { for } 1 \leqslant k<n \\
& \sigma(n) / n^{1+\epsilon} \geqslant \sigma(k) / k^{1+\epsilon} \text { for } k>n
\end{aligned}
$$

* the effect of this is to make a unique choice from the 2 or 4 possibilities in cases (c) and (d) above. But I will perform my computations with the Robin definition
* we will call these numbers strongly colossally abundant (SCA) if it is necessary to distinguish them from ordinary CA numbers

Position of critical ϵ values

critical ε values

The vertical lines mark the critical ϵ values arising from the small primes on the y axis

Density of critical ϵ values

The vertical lines mark the critical ϵ values

Dependence of maximal prime on n

This shows the maximal prime needed as a function of $\log \log (n)$

Method

* it is known that if RH is false, there will be a violation of Robin's inequality which is a CA number . . .
* for a range of small $\epsilon>0$, I compute n by the A\&E formula
* I compute RHS-LHS of Robin's inequality (let's call this the deviation $\delta(n) \equiv e^{\gamma} \log \log (n)-\rho(n)$), and look for any violations (i.e. $\delta<0$)
* we can also plot $\eta(n) \equiv e^{\gamma}-\rho(n) / \log \log (n)$
* the following plots show the behaviour observed so far (to about $\epsilon=\exp (-25)$)

Computational difficulties

* the exponents $a_{p}(\epsilon)$ must be computed in interval arithmetic, to ensure they are correct and not corrupted by roundoff error. This means not just high precision arithmetic, but dynamically varying precision
* millions of primes are needed. Typically the n we deal with have a huge tail of many primes to the power 1. It is fastest to precompute primes with a sieve, but then much storage is required.
* how do we vary ϵ to not miss any SCA numbers? (DONE)
* how to we compute explicit examples of WCA numbers?
* there are many other difficulties . . .

Computational strategy

We keep a list z of records, containing: a prime $p, \log p$, its exponent a, and a critical ϵ_{c}, which is the value of ϵ at which this exponent will next change (as ϵ is decreased). We exclude 1 exponents, which are counted by ones. We first initialize:
\triangleright fix $0<\epsilon_{\text {start }} \leqslant 1$. Then, for each prime p, compute $a=\left\lfloor\log _{p}\left(\frac{p^{1+\epsilon_{\text {start }}-1}}{p^{\text {statrt-1 }}}\right)\right\rfloor-1$ and store it in the z list if $a \geqslant 2$. If $a=1$, just increment the variable ones. Stop when $a=0$. During this p loop, also update $\log (n)$ and $\rho(n)$

Then each step of the main loop consists of determining which of possible events A, B, or C occurs:
\triangleright A: a new prime (with exponent 1) is added, so we increment 'ones'. This happens when $\epsilon_{\text {ext }}=\log _{p}(1+p)$ is maximal, where p is the new prime
\triangleright B: the first prime with exponent 1 has its exponent raised to 2. This happens when $\epsilon_{\text {inc }}=\log _{p}((p+1+1 / p) /(p+1))$ is maximal, where p is the prime in question
\triangleright C: a prime with exponent $\geqslant 2$ has its exponent incremented. This happens when $\epsilon_{\text {max }}=\log _{p}\left(\left(1-p^{a+1}\right) /\left(p-p^{a+1}\right)\right)$ is maximal, where p is the prime in question and a its exponent

Prime generation

For simple tests, just use a lookup list. With the BERNSTEIN option, crit_eps14.c uses Bernstein's quadratic sieve. Here we cannot just look up any prime; rather we have a function to get the next prime and advance the internal state (also to peek at the current prime without advancing). So the strategy is to use 2 prime generators - one (pg1) for the z list (which only grows slowly), and another (pg2) to see if the list of 1s needs extending. pg2 goes a long way, but we rely on Bernstein's code to keep it efficient.

Questions

* how does n depend on ϵ ?
* how does the largest prime needed depend on ϵ ?
* how does δ depend on ϵ ?
* interesting observation: when p is large and ϵ is small (the situation we are interested in), in the exponent formula of Alaoglu and Erdős it is already sufficient to use the first term of a Taylor expansion in ϵ, namely as $\epsilon \rightarrow 0^{+}$,

$$
\log _{p}\left(\frac{p^{1+\epsilon}-1}{p^{\epsilon}-1}\right)=\log _{p}\left(\frac{p-1}{\log p}\right)-\log _{p}(\epsilon)+\mathcal{O}(\epsilon)
$$

already has error less than $1 / 2$, so the floor is the correct integer. How can we exploit this?

* in the following plots the computed data is in red and hypothesized fits or trends are in blue

Dependence of n on ϵ

This shows that $\log \log (n)$ at SCA numbers n appears to be asymptotically a linear function of $-\log \epsilon$. The line $-1.779+0.947 x$ is guesswork

Density of CA numbers

Dependence of δ on n

This shows that $\log \delta$ appears to be asymptotically a linear function of $x=$ $\log \log (n)$

Dependence of δ on n

This is the last 100000 values of the previous plot

Deviation of $\log \delta$ from a best-fit line

This shows the difference between $\log \delta$ and a conjectured best-fit line $a-$ $x / 2$, where $x \equiv \log \log (n)$

References

[1] J. C. Lagarias An elementary problem equivalent to the Riemann hypothesis, Amer. Math. Monthly, 109 (2002), 534-543 www.math.lsa.umich.edu/~lagarias/doc/elementaryrh.ps
[2] L. Alaoglu \& P. Erdős On highly composite and similar numbers, Trans. Amer. Math. Soc. 56 (1944) 448-469
[3] G. Robin Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. pures appl. 63 (1984) 187-213
[4] S. Ramanujan Highly composite numbers. Annotated and with a foreword by J.-L. Nicholas and G. Robin, Ramanujan J. 1 (1997) 119-153
[5] J.-L. Nicolas Ordre maximal d'un élément du groupe des permutations et highly composite numbers, Bull. Math. Soc Fr. 97 (1969), 129-191
[6] P. Erdős and J.-L. Nicolas Répartition des nombres superabondants, Bull. Math. Soc Fr. 103 (1975), 65-90

