Notes on the Riemann hypothesis and abundant numbers

Keith Briggs

Keith.Briggs@bt.com more.btexact.com/people/briggsk2/

2005 April 21 14:27

<code>RH_abundant.tex</code> ('NOTES' OPTION) TYPESET IN <code>PDFIATEX</code> ON A LINUX SYSTEM

Introduction

★ In [1], Lagarias showed the equivalence of the Riemann hypothesis (RH) to a condition on harmonic sums, namely

 $\mathsf{RH} \Leftrightarrow \sigma(n) \leqslant H_n + \exp(H_n) \log(H_n) \ \forall n$

 \star Robin [3] had already shown that

 $\mathsf{RH} \Leftrightarrow \sigma(n)/n < e^{\gamma} \log \log (n) \quad \text{for} \quad n > 5040$

which is probably more convenient for numerical tests \star so to disprove RH, we need to find n with large $\sigma(n)/n$

Notation

- ★ n is always a positive integer; p is always a prime ★ $p_i = i$ th prime $(p_1=2, p_2=3,...)$
- \star harmonic sum for $n \ge 1$ is $H_n = \sum_{i=1}^n i^{-1}$
- \star sum of divisors is $\sigma(n) = \prod_i \frac{p_i^{a_i+1}-1}{p_i-1}$ for $n = \prod_i p_i^{a_i}$, $(a_i > 0)$

$$\star \sigma(n)/n = \prod_i \frac{p_i - p_i^{-a_i}}{p_i - 1}$$

- **\star** I define $\rho(n) \equiv \sigma(n)/n$
- $\star~e^{\gamma}=1.78107241799019798523650410310717954\ldots$, where $\gamma~$ is Euler's constant
- \star we will deal with n too large to represent in the computer ($\approx 10^{(10^{10})}$), but luckily we have its prime factorization which suffices

Superabundant numbers [2]

- $\star~n$ is superabundant (SA) if $\sigma(k)/k < \sigma(n)/n$ for all k < n
- ★ if $n = 2^{a_2} 3^{a_3} \dots m^{a_m}$ is SA, where m is the maximal prime factor, then $a_2 \ge a_3 \ge \dots \ge a_m$
- \star if $1 < j < i \leq m$, then $|a_i \lfloor a_j \log_i j \rfloor| \leq 1$
- \star $a_m = 1$ unless n = 4 or 36
- $\star i^{a_i} < 2^{a_2+1}, \ i \geqslant 2$
- $\star \ m \sim \log(n)$
- * SA numbers, with CA numbers in red: $2, 2^2, 2.3, 2^2.3, 2^3.3, 2^2.3^2, 2^4.3, 2^2.3.5 \dots$

The work of Robin [3]

★ Theorem:

 $\mathsf{RH} \Leftrightarrow \rho(n) < e^{\gamma} \log \log (n) \quad \text{for} \quad n > 5040$

★ Theorem: independently of RH, except for n = 1, 2, 12:

$$\rho(n) < e^{\gamma} \log \log \left(n\right) + \frac{\left[7/3 - e^{\gamma} \log \log \left(12\right)\right] \log \log \left(12\right)}{\log \log \left(n\right)}$$

The numerator in the last term is about 0.6482

* But note $\limsup_{n\to\infty} \frac{\sigma(n)}{n\log\log(n)} = e^{\gamma}$

The structure of the set of CA numbers

- ★ Defn: *n* is colossally abundant (CA) if there exists $\epsilon > 0$ such that $\sigma(n)/n^{1+\epsilon} \ge \sigma(k)/k^{1+\epsilon} \quad \forall k > 1$
- ★ Robin [3] has given the following precise description, due originally to Erdős & Nicolas [6]
- \star we first form the set E of critical ϵ values:

$$E_p \equiv \bigcup_{\alpha=1,2,3,\dots} \{ \log_p \left(1 + \frac{1}{\sum_{i=1}^{\alpha} p^i} \right) \}$$
$$E \equiv \bigcup_p E_p$$

* we label the elements of E in decreasing order: $\epsilon_1 = \log_2(3/2) > \epsilon_2 = \log_3(4/3) > \epsilon_3 = \log_2(7/6) > \dots$

The structure of the set of CA numbers cotd.

(a) if $\epsilon \notin E$, $\sigma(n)/n^{1+\epsilon}$ has a unique maximum attained at the number n_{ϵ} with prime exponents given by

$$a_p(\epsilon) = \left\lfloor \log_p \left(\frac{p^{1+\epsilon} - 1}{p^{\epsilon} - 1} \right) \right\rfloor - 1$$

- (b) if ϵ satisfies $\epsilon_{i+1} < \epsilon < \epsilon_i$ for i = 1, 2, 3, ..., then n_{ϵ} is constant and we call it N_i . We have $N_1 = 2, N_2 = 6, ...$
- (c) if the sets E_p are pairwise disjoint (which is likely, but not certainly known), then the set of CA numbers is equal to the set of $N_i, i = 1, 2, 3, \ldots$. If this is the case, $\sigma(n)/n^{1+\epsilon}$ attains its maximum at the two points N_i and N_{i+1}
- (d) if the sets E_p are not pairwise disjoint, then for each $\epsilon_i \in E_q \cap E_p$, $\sigma(n)/n^{1+\epsilon_i}$ attains its maximum at the four points N_i , qN_i , rN_i and $N_{i+1} = qrN_i$

Alaoglu & Erdős [2]

- \star these authors have a slightly stronger definition:
- \star Defn: *n* is colossally abundant if

$$\begin{array}{lll} \sigma(n)/n^{1+\epsilon} & > & \sigma(k)/k^{1+\epsilon} & \mbox{for} & 1 \leqslant k < n \\ \sigma(n)/n^{1+\epsilon} & \geqslant & \sigma(k)/k^{1+\epsilon} & \mbox{for} & k > n \end{array}$$

- ★ the effect of this is to make a unique choice from the 2 or 4 possibilities in cases (c) and (d) above. But I will perform my computations with the Robin definition
- ★ we will call these numbers strongly colossally abundant (SCA) if it is necessary to distinguish them from ordinary CA numbers

Position of critical ϵ values

critical ε values

The vertical lines mark the critical ϵ values arising from the small primes on the y axis

Density of critical ϵ values

Dependence of maximal prime on n

Method

- ★ it is known that if RH is false, there will be a violation of Robin's inequality which is a CA number . . .
- \star for a range of small $\epsilon>0,$ I compute n by the A&E formula
- ★ I compute RHS-LHS of Robin's inequality (let's call this the *deviation* $\delta(n) \equiv e^{\gamma} \log \log (n) \rho(n)$), and look for any violations (i.e. $\delta < 0$)
- * we can also plot $\eta(n) \equiv e^{\gamma} \rho(n) / \log \log (n)$
- \star the following plots show the behaviour observed so far (to about $\epsilon = \exp(-25)$)

Computational difficulties

- ★ the exponents $a_p(\epsilon)$ must be computed in interval arithmetic, to ensure they are correct and not corrupted by roundoff error. This means not just high precision arithmetic, but dynamically varying precision
- \star millions of primes are needed. Typically the *n* we deal with have a huge tail of many primes to the power 1. It is fastest to precompute primes with a sieve, but then much storage is required.
- \star how do we vary ϵ to not miss any SCA numbers? (DONE)
- \star how to we compute explicit examples of WCA numbers?
- \star there are many other difficulties . . .

Computational strategy

We keep a list z of records, containing: a prime p, $\log p$, its exponent a, and a critical ϵ_c , which is the value of ϵ at which this exponent will next change (as ϵ is decreased). We exclude 1 exponents, which are counted by *ones*. We first initialize:

▷ fix $0 < \epsilon_{start} \leq 1$. Then, for each prime p, compute $a = \left\lfloor \log_p \left(\frac{p^{1+\epsilon_{start}-1}}{p^{\epsilon_{start}-1}} \right) \right\rfloor - 1$ and store it in the z list if $a \ge 2$. If a = 1, just increment the variable ones. Stop when a = 0. During this p loop, also update $\log(n)$ and $\rho(n)$

Then each step of the main loop consists of determining which of possible events A, B, or C occurs:

- ▷ A: a new prime (with exponent 1) is added, so we increment 'ones'. This happens when $\epsilon_{ext} = \log_p (1+p)$ is maximal, where p is the new prime
- ▷ B: the first prime with exponent 1 has its exponent raised to 2. This happens when $\epsilon_{inc} = \log_p \left(\frac{p+1+1}{p} / \frac{p+1}{p+1} \right)$ is maximal, where p is the prime in question
- ▷ C: a prime with exponent ≥ 2 has its exponent incremented. This happens when $\epsilon_{\max} = \log_p \left((1-p^{a+1})/(p-p^{a+1}) \right)$ is maximal, where p is the prime in question and a its exponent

Prime generation

For simple tests, just use a lookup list. With the BERNSTEIN option, $crit_eps14.c$ uses Bernstein's quadratic sieve. Here we cannot just look up any prime; rather we have a function to get the next prime and advance the internal state (also to peek at the current prime without advancing). So the strategy is to use 2 prime generators - one (pg1) for the z list (which only grows slowly), and another (pg2) to see if the list of 1s needs extending. pg2 goes a long way, but we rely on Bernstein's code to keep it efficient.

Questions

- \star how does *n* depend on ϵ ?
- \star how does the largest prime needed depend on ϵ ?
- \star how does δ depend on ϵ ?
- ★ interesting observation: when p is large and ϵ is small (the situation we are interested in), in the exponent formula of Alaoglu and Erdős it is already sufficient to use the first term of a Taylor expansion in ϵ , namely as $\epsilon \rightarrow 0^+$,

$$\log_p\left(\frac{p^{1+\epsilon}-1}{p^{\epsilon}-1}\right) = \log_p\left(\frac{p-1}{\log p}\right) - \log_p(\epsilon) + \mathcal{O}(\epsilon)$$

already has error less than 1/2, so the floor is the correct integer. How can we exploit this?

★ in the following plots the computed data is in red and hypothesized fits or trends are in blue

Dependence of n on ϵ

This shows that $\log \log (n)$ at SCA numbers n appears to be asymptotically a linear function of $-\log \epsilon$. The line -1.779+0.947xis guesswork

Density of CA numbers

Dependence of δ on n

This shows that $\log \delta$ appears to be asymptotically a linear function of $x = \log \log (n)$

Dependence of δ on n

This is the last 100000 values of the previous plot

Deviation of $\log \delta$ from a best-fit line

This shows the difference between $\log \delta$ and a conjectured best-fit line a - x/2, where $x \equiv \log \log (n)$

References

- [1] J. C. Lagarias An elementary problem equivalent to the Riemann hypothesis, Amer. Math. Monthly, 109 (2002), 534-543 www.math.lsa.umich.edu/~lagarias/doc/elementaryrh.ps
- [2] L. Alaoglu & P. Erdős On highly composite and similar numbers, Trans. Amer. Math. Soc. 56 (1944) 448-469
- [3] G. Robin Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. pures appl. 63 (1984) 187-213
- [4] S. Ramanujan Highly composite numbers. Annotated and with a foreword by J.-L. Nicholas and G. Robin, Ramanujan J. 1 (1997) 119-153
- [5] J.-L. Nicolas Ordre maximal d'un élément du groupe des permutations et highly composite numbers, Bull. Math. Soc Fr. 97 (1969), 129-191
- [6] P. Erdős and J.-L. Nicolas *Répartition des nombres superabondants*, Bull. Math. Soc Fr. **103** (1975), 65-90