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Introduction

F In [1], Lagarias showed the equivalence of the Riemann hy-
pothesis (RH) to a condition on harmonic sums, namely

RH⇔ σ(n) 6 Hn+exp(Hn) log(Hn) ∀n

F Robin [3] had already shown that

RH⇔ σ(n)/n < eγ log log (n) for n > 5040

which is probably more convenient for numerical tests

F so to disprove RH, we need to find n with large σ(n)/n
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Notation

F n is always a positive integer; p is always a prime

F pi = ith prime (p1=2, p2=3, . . . )

F harmonic sum for n > 1 is Hn =
∑n

i=1 i−1

F sum of divisors is σ(n) =
∏

i
p

ai+1
i −1
pi−1 for n =

∏
i pai

i , (ai > 0)

F σ(n)/n =
∏

i
pi−p

−ai
i

pi−1

F I define ρ(n) ≡ σ(n)/n

F eγ = 1.78107241799019798523650410310717954 . . . , where γ is
Euler's constant

F we will deal with n too large to represent in the computer
(≈ 10(1010)), but luckily we have its prime factorization which
suffices
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Superabundant numbers [2]

F n is superabundant (SA) if σ(k)/k < σ(n)/n for all k < n

F if n = 2a2 3a3 . . . mam is SA, where m is the maximal prime
factor, then a2 > a3 > · · · > am

F if 1 < j < i 6 m, then |ai−baj logi jc| 6 1

F am = 1 unless n = 4 or 36

F iai < 2a2+1, i > 2

F m ∼ log(n)

F SA numbers, with CA numbers in red:
2, 22, 2.3, 22.3, 23.3, 22.32, 24.3, 22.3.5 . . .
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The work of Robin [3]

F Theorem: RH⇔ ρ(n) < eγ log log (n) for n > 5040

F Theorem: independently of RH, except for n = 1, 2, 12:

ρ(n) < eγ log log (n)+
[7/3−eγ log log (12)] log log (12)

log log (n)

The numerator in the last term is about 0.6482

F But note lim supn→∞
σ(n)

n log log (n) = eγ
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The structure of the set of CA numbers

F Defn: n is colossally abundant (CA) if there exists ε > 0 such
that

σ(n)/n1+ε > σ(k)/k1+ε ∀k > 1

F Robin [3] has given the following precise description, due
originally to Erd ′′os & Nicolas [6]

F we first form the set E of critical ε values:

Ep ≡
⋃

α=1,2,3,...

{ logp

(
1+

1∑α
i=1 pi

)
}

E ≡
⋃
p

Ep

F we label the elements of E in decreasing order:
ε1 = log2(3/2) > ε2 = log3(4/3) > ε3 = log2(7/6) > . . .
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The structure of the set of CA numbers cotd.

(a) if ε /∈ E, σ(n)/n1+ε has a unique maximum attained at the
number nε with prime exponents given by

ap(ε) =
⌊
logp

(
p1+ε−1
pε−1

)⌋
−1

(b) if ε satisfies εi+1 < ε < εi for i = 1, 2, 3, . . . , then nε is
constant and we call it Ni. We have N1 = 2, N2 = 6, . . .

(c) if the sets Ep are pairwise disjoint (which is likely, but not
certainly known), then the set of CA numbers is equal to the
set of Ni, i = 1, 2, 3, . . . . If this is the case, σ(n)/n1+ε attains
its maximum at the two points Ni and Ni+1

(d) if the sets Ep are not pairwise disjoint, then for each
εi ∈ Eq∩Ep, σ(n)/n1+εi attains its maximum at the four points
Ni, qNi, rNi and Ni+1 = qrNi
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Alaoglu & Erd ′′os [2]

F these authors have a slightly stronger definition:

F Defn: n is colossally abundant if

σ(n)/n1+ε > σ(k)/k1+ε for 1 6 k < n

σ(n)/n1+ε > σ(k)/k1+ε for k > n

F the effect of this is to make a unique choice from the 2 or 4
possibilities in cases (c) and (d) above. But I will perform my
computations with the Robin definition

F we will call these numbers strongly colossally abundant (SCA)
if it is necessary to distinguish them from ordinary CA numbers
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Position of critical ε values

critical ε values
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critical ε values arising from the
small primes on the y axis
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Density of critical ε values

strongly colossally abundant numbers
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Dependence of maximal prime on n
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This shows the maximal
prime needed as a function
of log log (n)
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Method

F it is known that if RH is false, there will be a violation of
Robin's inequality which is a CA number . . .

F for a range of small ε > 0, I compute n by the A&E formula

F I compute RHS-LHS of Robin's inequality (let's call this the de-
viation δ(n) ≡ eγ log log (n)−ρ(n)), and look for any violations
(i.e. δ < 0)

F we can also plot η(n) ≡ eγ−ρ(n)/ log log (n)

F the following plots show the behaviour observed so far (to
about ε = exp(−25))
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Computational difficulties

F the exponents ap(ε) must be computed in interval arithmetic,
to ensure they are correct and not corrupted by roundoff
error. This means not just high precision arithmetic, but
dynamically varying precision

F millions of primes are needed. Typically the n we deal with
have a huge tail of many primes to the power 1. It is fastest
to precompute primes with a sieve, but then much storage is
required.

F how do we vary ε to not miss any SCA numbers? (DONE)

F how to we compute explicit examples of WCA numbers?

F there are many other difficulties . . .
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Computational strategy

We keep a list z of records, containing: a prime p, log p, its exponent a, and a
critical εc, which is the value of ε at which this exponent will next change (as ε is
decreased). We exclude 1 exponents, which are counted by ones. We first initialize:

. fix 0 < εstart 6 1. Then, for each prime p, compute a =
⌊
logp

(
p1+εstart−1
pεstart−1

)⌋
−1

and store it in the z list if a > 2. If a = 1, just increment the variable
ones. Stop when a = 0. During this p loop, also update log(n) and ρ(n)

Then each step of the main loop consists of determining which of possible events
A, B, or C occurs:

. A: a new prime (with exponent 1) is added, so we increment `ones'. This
happens when εext = logp (1+p) is maximal, where p is the new prime

. B: the first prime with exponent 1 has its exponent raised to 2. This happens
when εinc = logp ((p+1+1/p)/(p+1)) is maximal, where p is the prime in
question

. C: a prime with exponent > 2 has its exponent incremented. This happens
when εmax = logp ((1−pa+1)/(p−pa+1)) is maximal, where p is the prime in
question and a its exponent

Keith Briggs RH and abundant numbers 14 of 22



Prime generation

For simple tests, just use a lookup list. With the BERNSTEIN option, crit eps14.c
uses Bernstein’s quadratic sieve. Here we cannot just look up any prime; rather we
have a function to get the next prime and advance the internal state (also to peek at
the current prime without advancing). So the strategy is to use 2 prime generators
- one (pg1) for the z list (which only grows slowly), and another (pg2) to see if the
list of 1s needs extending. pg2 goes a long way, but we rely on Bernstein’s code to
keep it efficient.
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Questions

F how does n depend on ε?

F how does the largest prime needed depend on ε?

F how does δ depend on ε?

F interesting observation: when p is large and ε is small (the
situation we are interested in), in the exponent formula of
Alaoglu and Erd ′′os it is already sufficient to use the first term
of a Taylor expansion in ε, namely as ε → 0+,

logp

(
p1+ε−1
pε−1

)
= logp

(
p−1
log p

)
−logp(ε)+O(ε)

already has error less than 1/2, so the floor is the correct
integer. How can we exploit this?

F in the following plots the computed data is in red and hy-
pothesized fits or trends are in blue
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Dependence of n on ε
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This shows that log log (n)
at SCA numbers n ap-
pears to be asymptotically
a linear function of − log ε.
The line −1.779+0.947x
is guesswork
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Density of CA numbers
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Dependence of δ on n
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Dependence of δ on n
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Deviation of log δ from a best-fit line
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This shows the difference
between log δ and a con-
jectured best-fit line a−
x/2, where x ≡ log log (n)
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