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Abstract

BT is installing wireless access points in several British cities. For these wireless cities
the protocol used is IEEE 802.11b, that has 13 partially overlapping frequency channels
in the UK and most of Europe. Four different modulations schemes are specified in the
2.4 GHz band with a maximum data rate of 11 Mbps.

This report discusses the problem of simultaneous channel and power allocation and
presents an exact algorithm to solve this problem to optimality.

To optimize the user throughput and coverage area it is advantageous to use all
available frequence channels to minimize the spectral overlap. Another way to reduce
the interference is to minimize the spatial overlap by varying the transmit power of
each access point. In this way the coverage area of each access point is regulated and
the interference can be minimized.

Optimizing the channel and power allocation is a combinatorial optimization pro-
blem with a time complexity that is larger than exponential. The optimization problem
is solved with an newly proposed branch-and-bound method, named local best-first
search. This is a combination of a depth-first and best-first search. The advantage of
using this alternative algorithm is that it has improved pruning and finds the optimal
solution faster for this type of problem.

First, the simpler problem of optimizing the channel allocation solely is solved. For
all access points the powers are assumed equal in this case. The results show that there
is a trade-off between the computational time and channel spacing. A smaller channel
spacing results in a better objective value, but requires more time to find the optimal
solution. An interesting result is that a channel spacing of 3 performs on average better
than a channel spacing of 2.

Next, the problem is extended to joint channel and power optimization, where the
transmit power of the access points is also varied. Several objectives are discussed
which model the optimization problem. Some introductory results are presented and
show that a small number of power levels cause only little improvement in the objec-
tive. However, using more rigid power control (e.g. turning access points off) shows
larger improvements. The results presented can be used for further research on joint
channel and power optimization.
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Chapter 1

Introduction

Wireless internet is becoming more and more common in today’s world. Still more
hand-held devices are available that can access the internet through WLAN and more
services are becoming available for these purposes. The main advantage of wireless
internet is of course mobility.

In the future we might reach a scenario where wireless internet is available every-
where. At the moment a first step is made by creating ’wireless cities’. In several cities,
spread all over the world, a large number of access points are installed to give wireless
coverage over a certain area. Some are already commercially deployed, but most of
these set-ups are still in an experimental stage and are used for research purposes.

One of the main research questions is how to assign the available frequency channels
to the access points and how to select the appropriate transmitter power. Both these
aspects are of influence on the coverage and the received interference in the area. Also,
the positioning of the access points is subject to some constraints, because of landline
access (backhaul) and restricted installation locations, and has to be accounted for.

BT and wireless cities

BT is installing wireless access points (APs) in several British cities. Usually the protocol
used for these APs is IEEE 802.11b. These APs can use 11 (US) or 13 (EU/UK) different
channels (which partially overlap) and have an upper power limit. IEEE 802.11b is
standardized in 1999, operates in the 2.4GHz ISM-band and has a maximum data rate
of 11Mbps.

To optimize the user experience (e.g. throughput and coverage) the channels and
powers of all APs have to be set in such a way that the received interference is mini-
mized, while retaining a large coverage. This is a NP (non-deterministic polynomial)
combinatorial optimization problem, as the number of possible channel and power as-
signments grows faster than exponentially when the number of access points increases.

1



2 Chapter 1. Introduction

Assignment

The goal of this assignment is to provide a reliable optimization program and find to
what extent (i.e. size of wireless city and the number of access points) exact optimization
is applicable in real-life situations.

This assignment can be split up in two parts: the optimization of the channel alloca-
tion of access points and the optimization of the power allocation. At first the powers
of all access points are assumed equal, and an optimal solution using channel allocation
will be found. Later on the transmit powers of all access points can be varied and power
optimization is used to increase the performance even further.

Report outline

This report starts with an introduction on combinatorial optimization (CO) in Chapter
2. Some well known examples are discussed and specifically why the wireless cities
problem is combinatorial.

In Chapter 3 we continue the discussion on CO by presenting a branch-and-bound
method. This method is an algorithm to solve CO problems to optimality and is dis-
cussed in general. The branch-and-bound method is used to solve the wireless cities
problem as will be shown in subsequent chapters.

After discussing combinatorial optimization and the branch-and-bound method in
general, Chapter 4 relates this to the channel optimization problem. Models are pre-
sented to minimize the average and maximum interference.

The results obtained from the models described in Chapter 4 are presented and dis-
cussed in Chapter 5.

To reduce the received interference even further, power variation is added to the
optimization problem. A new model for joint channel and power allocation is presented
in Chapter 6.

Chapter 7 will present introductory results on the joint channel and power allocation
problem.

Finally, in Chapter 8 the results for both channel and power allocation are summa-
rized, together with the conclusions. At the end of this chapter are some recommenda-
tions are given for further research.



Chapter 2

Combinatorial optimization

2.1 Introduction

Combinatorial optimization (CO) problems are problems where the best solution out of
a large but finite number of alternative solutions has to be chosen. Combinatorial refers
to the finite number of alternative solutions and optimization refers to the most optimal
solution that has to be chosen depending on the objective.

The best solution optimizes the objective of the problem. These objectives are either a
minimization or a maximization of an objective function f(x). In case of a minimization
problem (most common) the objective can be written as:

min
x∈S

f(x) (2.1)

where x represents an alternative solution in the solution space S and f(x) is the objec-
tive function of x. The best x will solve the objective to optimality.

All (alternative) solutions are subject to constraints. All constraints can be wrapped
into a boolean function c(x). The function will return true if all constraints are satisfied
and false otherwise. If all constraints are met, a solution is said to be feasible. Infeasible
solution are outside the solution space and cannot be used to optimize the objective.

Example

One of the best known CO problems is the traveling salesman problem (TSP). In this
problem a salesman has to travel to a finite number of cities, which he all has to visit
once, and finally return to the city where he started from. The objective of this problem
is to minimize the total traveling distance. An example is given in Figure 2.1, where the
weight on the edges represent the traveling distance between cities.

The following can be said about the TSP:

• x: vector containing the cities in the order the salesman has to visit them

• c(x): the constraints are that the salesman has to visit every city once

3
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Figure 2.1: Traveling salesman problem

• S: the solution space consists of all routes that satisfy the constraints

• f(x): the objective function gives the total traveling distance for a route x

• min f(x): the total objective is to find the smallest f(x)

In this case x is a vector containing the cities in the order that the salesman has to
travel to them. The constraints are that the salesman has to visit every city and each city
can only be visited once, and these define the solution space S. The objective function
f(x) will give the total traveling distance, depending on the vector x.

2.2 Exact vs. heuristic

An exact algorithm solves a CO problem to optimality, which is the best possible solu-
tion, whereas a heuristic method determines a feasible solution that is probably good,
but not proved to be optimal.

Often the computational time needed for an exact algorithm is very large, whereas it
is small for a heuristic (approximation method). However, for relatively small problems,
an exact algorithm can still solve a problem to optimality in reasonable time.

A disadvantage of a heuristic is that you don’t know exactly how good the solution
produced is, compared with the best solution possible.

2.3 Time complexity

The complexity of a CO problem can be defined as the number of elementary opera-
tions in an algorithm. The term complexity is in this case related to the computational
time and specifies the time to solve a certain problem with the algorithm. The computa-
tional time is normally given as an absolute value, whereas the time complexity is often
denoted as a function of the size of the problem:

O(n2) (2.2)
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The statement above means that the time complexity is in the order of n2, where n is the
size of the problem.

Class P vs. NP

There are mainly two classes of CO problems. The first class of problems consist of
those where the time complexity can be bounded from above by a polynomial. Hence
the class P (polynomial time).

The other class of problems consist of problems which are very unlikely to be solved
in polynomial time. Hence the class NP (non-deterministic polynomial time).

For this type of problems the time complexity explodes with an increasing size of
the problem (e.g. O(2n)). For the traveling salesman problem the number of feasible
solutions equals (n − 1)!, with n the number of cities, and thus grows faster than expo-
nentially.

2.4 Wireless cities

The use of combinatorial optimization techniques are applicable for wireless city envi-
ronments. I.e. an area inside a city that has wireless coverage for access to the internet.

The problem of optimizing the channel and power allocation of access points (APs)
in wireless cities is a NP CO problem, as mentioned in Chapter 1. This means that the
time complexity grows exponentially with the size of the problem (i.e. number of access
points) that needs to be solved.

The use of a heuristic method will give a reasonable solution in little time. However,
the problem with heuristics is that we don’t know how good or bad this reasonable
solution is. With the use of tricks a problem of fair size can still be solved to optimality
with an exact algorithm in reasonable time.

The branch-and-bound method is such an exact algorithm which is presented in
Chapter 3 in a general way.





Chapter 3

Branch-and-bound

The branch and bound method is a widely used algorithm to solve problems to optimal-
ity and with that find the best solution possible. Branch-and-bound is a so-called enu-
merative method, because it displays all possible solutions in a tree-like structure. The
method differs from complete enumeration by discarding large parts of the tree from
evaluation. This is called pruning and makes branch-and-bound a powerful method.

3.1 Introduction

The branch-and-bound tree consists of several layers, called depths. In case of the trav-
eling salesman problem (TSP), the number of depths is equal to the number of cities that
have to be visited and in the case of wireless cities equal to the number of wireless ac-
cess points (APs). The tree always starts in the root node at depth 0. From this node an
iterative process of branching, bounding and pruning starts. In Figure 3.1 an example
is given for the TSP, where 3 cities have to be visited, and the wireless cities problem,
where 3 APs have to be assigned to 1 of 2 different channels.

The total tree consists of a large number of nodes and edges. The nodes represent
a partial solution, except for leaf nodes (at the bottom) which represent complete solu-
tions. In case of the TSP the nodes represent the (partial) in-order vector of cities to be
visited or in the case of wireless cities the (partial) assignment of channels to APs. The
edges connect the nodes and form paths from the root node to the leaf nodes. Each path
in the tree represents a different complete solution.

The tree is traversed in a process of branching, bounding and pruning. Each of these
processes are discussed next.

3.1.1 Branching

Branching is the creation of several edges originating from a single node, resulting in
new nodes at the next depth. The number of edges originating from each node is de-
fined by the number of possible assignments to the following node. In the case of the

7
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depth 0

depth 1

depth 2

depth 3

CITY 1

CITY 2

CITY 3

Traverling salesman problem

1 2 3

2 3 1 3 1 2

3 2 3 1 2 1

AP 1

AP 2

AP 3

Wireless cities

1 2

1 2 1 2

1 2 1 2 1 2 1 2

Figure 3.1: Branch-and-bound tree for the traveling salesman problem (TSP) and the
wireless cities problem

TSP the number of edges is equal to the number of cities that have not yet been visited
and the case of wireless cities the number of possible channels.

Each edge represents an assignment of a possible choice to the following node. In
the case of the TSP each edge represents a city and in the case of wireless cities each
edge represents a certain channel. The total number of edges emerging is equal to the
number of cities that have not yet been assigned or visited, or the number of possible
channel allocations.

3.1.2 Bounding

In the branch-and-bound method there are two bounds that are important for prun-
ing: the lower bound α and upper bound ω. The calculation of these bounds is called
bounding.

α is computed at every node and represents the evaluation of a partial solution.
Every node that emerges below this node will have an α that is greater or equal than the
previously calculated lower bound.

ω is a global bound and represents the best complete solution that is known so far in
the whole tree and can only be found at leaf nodes.

3.1.3 Pruning

The computation of the lower and upper bounds (i.e. bounding) give us powerful tools
for pruning. Pruning discards parts of the tree which can only result in a complete
solution that will be worse that the one already found.

The case for which this is true, is when the lower bound α is larger than the upper
bound ω (i.e. α > ω). As α can never get smaller, when traversing down the tree, there
can never emerge a solution that is better than ω. Thus, if for any node α is larger than
ω, the node and all its children (nodes on subsequent depths) can be discarded.
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Figure 3.2: Optimized graph coloring: at least 3 different colors are needed to color this
graph

Nodes are often also discarded when α is equal to ω. This means that the best solu-
tion that can be found traversing down the tree will at best be equal to the current best
solution. For matters of computational time, we have no interest in equal solutions.

Example 3.1

Another combinatorial optimization (CO) problem that can be solved with the branch-
and-bound method is the graph-coloring problem. In this problem a color has to be
assigned to every node and the objective is to minimize to the number of different colors
that are used. The constraint in this problem is that two nodes connected by an edge,
cannot be assigned the same color. An optimized solution for 8 nodes is given in Figure
3.2.

In the example shown in Figure 3.2 there are 8 nodes (n) that need to be colored.
The maximum number of different colors (max) that can be used is equal to the number
of nodes, i.e. also 8. After optimizing, the figure reveals that the minimum number of
colors that need to be used is 3.

The optimization process is performed with the branch-and-bound algorithm called
MINIMIZE(), given in Algorithm 1. This algorithm describes a recursive depth-first
search (see Section 3.2.1) in pseudo-code, which traverses a tree and evaluates the nodes
in a systematic way.

3.2 Methods

There are several versions of the branch-and-bound method. Each of them has its
advantages for different types of problems. The difference between these methods is
mainly based on what branch to follow up on or what node to continue with, i.e. the
order in which the nodes in the tree are evaluated.

Traversing a tree in different ways and evaluating nodes in a different order will
influence the speed of the optimization process, as the pruning process may differ for
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Algorithm 1 MINIMIZE()

Parameters:
Integer depth > 0, initialized to 0
Integer n, equal to the number of nodes
Vector x of length n, containing the assigned node colors
Vector z of length n, remembering the x that gave the best f(x) so far
Function c(x), checking if all constraints are satisfied by x
Function α(x), representing a lower bound for f(x)
Real ω, representing the upper bound, initialized to infinity
Integer max, the number of different colors available

1: depth+ +
2: for i = 1 to max do
3: x[depth− 1] = i
4: if c(x) & (α(x) < ω) then
5: if depth == n then
6: ω = α(x)
7: z ← x
8: else
9: MINIMIZE()

10: end if
11: end if
12: end for
13: depth−−
14: return
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each method. Deciding which method to use depends on the type of problem. Several
variants and guidelines are discussed next.

3.2.1 Depth-first search

The depth-first search (dfs) traverses down the tree to a leaf node as quickly as possible,
starting from the root node. Once a leaf node is reached, the path is backtracked and
the first possibility to traverse down again is taken to find the next leaf node. The graph
structure is shown in Figure 3.3a.

As the dfs quickly reaches a leaf node, it quickly finds a feasible solution. This solu-
tion gives a first indication of the objective value and gives an upper bound ω useful for
pruning. A dfs algorithm is easy to implement in a recursive program.

3.2.2 Breadth-first search

In a breadth-first search (bfs) all nodes are evaluated depth-wise. This means that first
all nodes at depth 1 are evaluated and then all nodes at depth 2, unregarded of the
parent nodes. The graph structure is shown in Figure 3.3b.

The bfs evaluates the tree in a structured manner, pruning the parts of the tree which
do not satisfy the constraints or have lower bounds α larger than the upper bound ω.
However, it takes a long time to reach a leaf node and find a first complete solution.

3.2.3 Best-first search

In a best-first search the tree is traversed, starting each time from the best node known.
In other words, a heuristic is used to decide the next node to continue with. This heuris-
tic may help finding the optimal solution quicker, but this will not be true for every
case.

When a node is branched on, for all children the lower bound α is determined. The
next node to branch on, is the node with the lowest lower bound α in the whole tree.
The search therefore always continues with the best possible node. The graph structure
is shown in Figure 3.3c.

The best-first search finds the best possible solution as fast as possible, but requires
a lot of state information to find the next best node to continue with, which can be a
burden on the computational time.

3.2.4 Local best-first search

The local best-first search is a combination of depth-first and best-first search. In this
method the tree is traversed downwards until a leaf node is reached, as in a dfs. How-
ever, at each depth the best node is chosen to continue with, depending on each child’s
lower bound α, as with a best-first search. However, note that the next node is chosen
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depth 0
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(a) Depth-first search (dfs)
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Figure 3.3: Tree structures for several variants of the branch-and-bound method

locally and not global. When a leaf node is reached, the path is backtracked and for
the first parent node with unevaluated children encountered, the best child is chosen to
continue with. The graph structure is shown in Figure 3.3d.

As the dfs, the local best-first search also finds a feasible solution quickly. However,
by choosing the best node to continue with, the best solution will be found quicker.



Chapter 4

Channel optimization - introduction

With the methods and tools discussed in Chapter 2 and 3 the channel optimization pro-
blem can be analyzed and modeled. This chapter gives a problem description together
with a branch-and-bound model.

4.1 Problem description

Channel optimization is optimizing the channel allocation for access points to maximize
the throughput experienced by a user.

The scenario considered is a urban area with a number of access points up to 35.
The protocol used is IEEE 802.11b, which can use 13 channels in the UK and most parts
of Europe, in the 2.4 GHz range. The center frequencies are spaced 5 MHz apart, but
adjacent channels still have considerable overlap in the frequency spectrum, see Figure
4.1. The bandwidth of each channel is considered to be 20 MHz, but spreads outs over
a wider range in reality. The exact overlapping factors are given in Table 4.1. All access
points (APs) are considered to use equal transmit power.

Figure 4.1: Spectral channel overlap in IEEE 802.11b (US channels)

13
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spacing overlap factor spacing overlap factor
0 1.00 7 0.54 · 10−4

1 0.73 8 0.18 · 10−4

2 0.27 9 0.79 · 10−5

3 0.37 · 10−1 10 0.32 · 10−5

4 0.54 · 10−2 11 0.18 · 10−5

5 0.84 · 10−3 12 . . .
6 0.18 · 10−3 13 . . .

Table 4.1: Overlapping factors in IEEE 802.11b, based on the channel spacing [4]

The outdoor range in open field (including 1 wall) is about 140 meters, but for an
urban area the range would typically decrease to 50 or 100 meters, depending on the
surroundings. Therefore, the mean separation between the access points should be in
the order of this range, to obtain a coverage area that is as large as possible and results
in the least amount of interference. For simulation purposes a mean separation of 50
meters is assumed.

For practical purposes the positions of the APs will come from real-life situations,
but for simulation purposes the AP locations are considered to be placed in a quasi-
random way such that the coverage area will be as large as possible. Quasi-random
number generators are discussed in Appendix A.

4.1.1 Model description

The optimization criterion that is used in the proposed model is based on the received
interference at any access point. This results in a simplified objective compared to the
actual objective of maximizing the user throughput. This simplification will speed up
the algorithm.

Instead of computing the interference at every possible location, the interference is
approximated by a single measurement at the AP for its coverage area. The approx-
imation error will be small for locations situated nearby the AP, because the relative
distance from these locations to the AP is very small, compared with the distance to the
other APs, and will thus be the same. For locations near the border of the coverage area
of an AP, the approximation will be less accurate.

Furthermore, the model only considers the interference received from other APs and
does not take noise into account. Noise is assumed to be additive and fading effects can
be introduced by using Rayleigh or Rician model.

4.1.2 Power and interference

During the simulations of the branch-and-bound algorithm the following parameters
are used:
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• Transmit power Pt: 100 mW (20 dBm)

• Path loss exponent n: 2.86 (urban area)

• Reference path loss PL(d0): 40.2 dB (at d0=1m)

The reference path loss can be calculated with Friis free space equation (considering
unity gain) [7]:

Pr(d0) =
Ptλ

2

(4π)2d2
0

(4.1)

where Pr is the received power at reference distance d0, Pt the transmit power and λ the
wavelength.

With the log-distance path loss model, the total path loss can be determined in the
following way [7]:

PL(d)[dB] = PL(d0) + 10n log10

(
d

d0

)
(4.2)

where PL(d) is the total path loss over distance d, PL(d0) the path loss at reference
distance d0 and n the path loss exponent.

Finally, the received power can be found after subtracting the path loss from the
transmit power [7]:

Pr[dBm] = Pt[dBm]− PL[dB] (4.3)

4.1.3 Modulation schemes

In IEEE 802.11b there are four different modulation modes specified, see Figure 4.2.
Each modulation scheme requires a different minimal SNR (signal-to-noise ratio). A
better SNR allows switching to a higher modulation mode, which increases the through-
put. The modulation modes can be used to convert the SNR to actual throughput to
obtain coverage areas with specific throughputs.

4.2 Objectives

There are several criteria by which the channel allocation problem can be optimized,
the so-called objective functions. In any case the total objective has to be minimized,
because all objective functions consider the interference that is received at each access
point (AP). There are two main objective functions f(x) that are of interest:

• avg: minimize the average interference that is experienced at each AP

• max: minimize the maximum interference that is experienced at each AP
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Figure 4.2: Throughput for 4 different modulation schemes in IEEE 802.11b [3]

The optimization problem is given as (see Section 2.1):

min
x∈S

f(x) (2.1)

The total interference at APi is given by:

Ii(x) =
∑
j 6=i

Ii,j(x) (4.4)

where Ii,j(x) is the interference at APi caused by APj , as a function of the allocated
channel vector x.

4.2.1 Average interference

The avg objective is a measure of the average interference that is received at every AP.
The average interference per AP can be obtained by dividing the total interference re-
ceived by all APs by the number of APs (n). The avg objective function is:

f(x) =
1

n

∑
i

Ii(x) (4.5)

4.2.2 Maximum interference

The max objective gives an explicit upper bound for the maximum interference that is
received by any AP. The max objective function is:

f(x) = max
i
Ii(x) (4.6)
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Figure 4.3: Branch-and-bound tree: channel optimization

4.3 Branch-and-bound model

With the objective defined in Section 4.2, a branch-and-bound model can be constructed.
In this model the number of depths in the branch-and-bound tree will be equal to the
number of APs, instead of the number of cities in the TSP. Furthermore, at each depth a
certain channel is assigned to an AP. Therefore, the number of branches emerging from
each AP will be equal to the number of channels. Figure 4.3 shows a tree with three APs
and 13 channels.

For the channel optimization problem there are no constraints, because each channel
can be assigned to every node and every channel can be used multiple times or none.
Therefore, the solutions space S in Equation 2.1 consists of all possible combinational
channel assignments x, where x is a vector with the channel allocations for each AP.

Summarizing:

• x: vector containing the channels that are assigned to the APs

• c(x): there are no constraints for the channel optimization problem, thus c(x) will
always return true

• S: the solution space consists of all possible combinations of channel assignments
to the APs

• avg: this objective function f(x) determines the average interference at a single AP,
given a certain x ∈ S

• max: this objective function f(x) determines the maximum interference at a single
AP, given a certain x ∈ S

• min f(x): the total objective is to find the x ∈ S that minimizes f(x)

• time complexity: the computational time required is O(cn), with n the number of
APs and c the number of channels (13 in most of Europe and the UK)





Chapter 5

Channel optimization - implementation
and results

The models discussed in Chapter 4 are used to optimize the channel allocation over
all APs, such that the interference received at any AP is minimized. To speed up the
simulations several programming tricks are implemented and discussed next in Sec-
tion 5.1. The simulation results, which show the time dependencies and the achievable
interference levels are presented in Section 5.2.

5.1 Implementation

As the size of the channel optimization problem (i.e. the number of nodes n) and its time
complexity grows very fast (O(13n)), the branch-and-bound algorithm must be very
efficient to compute. Therefore, the algorithms are implemented in the C programming
language. C is one of the fastest programming languages, because it is very low-level.
This results in little overhead and allows you to control every step in the algorithm.

5.1.1 Branch-and-bound: local best-first search

The branch-and-bound variant used for implementation of the channel optimization
problem is the local best-first search, as discussed in Section 3.2.4. This method allows
for quick pruning and converges quickly to the optimal solution. Experiments showed
that this method has superior pruning for this specific problem compared to the other
methods that were discussed in Chapter 3. The pseudo-code for the local best-first
search method which minimizes the interference is given in Algorithm 2.

5.1.2 Programming tricks

The channel allocation problem belongs to the NP class and even though the algorithms
are implemented in C, the computation still takes a considerable amount of time. There-

19
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Algorithm 2 MINIMIZE()

Parameters:
Integer depth > 0, initialized to 0
Integer n, equal to the number of access points
Vector x of length n, containing the channel assignment
Vector z of length n, remembering the x that gave the best f(x) so far
Integer num channels , containing the available number of frequency channels
Local matrix child of size [n x 2], containing α(x) and channel for evaulated child
nodes
Function α(x), representing a lower bound for f(x)
Real ω, representing the upper bound, initialized to infinity

1: depth + +
2: at leaf = false
3: m = 0
4: for j = 1 to num channels do
5: if depth == 1 and 2j > num channels then
6: break
7: end if
8: x[depth− 1] = j
9: if α(x) < ω then

10: child[m][0] = α(x)
11: child[m][1] = x[depth− 1]
12: m+ +
13: if depth == n then
14: at leaf = true
15: ω = α(x)
16: z ← x
17: end if
18: end if
19: end for
20: if !at leaf then
21: permute rows of child so that column 0 is decreasing
22: for row in child do
23: x[depth− 1] = row [1]
24: MINIMIZE()
25: end for
26: end if
27: depth −−
28: return
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Channel
avg max

Complementary solutions x x
Channel spacing x x
Pre-ordering x x
Initial random solution x x
Incremental objectives x
Symmetric AP distance matrix x x

Table 5.1: Programming tricks

1 8 3 13 5

13 6 11 1 9

7 1 13 9 2

7 13 1 5 12

Figure 5.1: Complementary channel assignment schemes: 2 examples

fore, a number of smart tricks are implemented in the algorithm to reduce the compu-
tational time even further. All tricks are listed in Table 5.1 and are discussed next.

Complementary solutions

All possible solutions for this optimization problem have a complementary solution.
Since the first channel has the same properties as the last channel, the second channel
has the same properties as the second-last channel and so on, it makes no difference
whether the channel assignment start with the first or the last channel. Therefore, these
solutions will be interchangeable. The solutions will give the same objective value and
therefore half of the solutions in the tree can be discarded.

In Figure 5.1 two pairs of complementary channel assignment are given. Each pair
of channel allocation schemes will result in the same objective value and thus the same
amount of interference.

By allowing the first AP only to be assigned the first half of all possible channels,
half of the branch-and-bound tree is discarded. The part of the tree that is discarded
exactly contains the complementary solutions. All other APs are still allowed to use all
possible channels.

Channel spacing

In practical cases not every available channel is used, but for example a channel spacing
of 3 is implemented. This means that only channels 1, 4, 7, 10 and 13 can be assigned
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Channel
spacing Channel numbers Total

1 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 13
2 1 - 3 - 5 - 7 - 9 - 11 - 13 7
3 1 - 4 - 7 - 10 - 13 5
4 1 - 5 - 9 - 13 4
5 1 - 6 - 11 3
6 1 - 7 - 13 3

Table 5.2: Channel spacing and their respective channels

to APs. As a larger separation in channels inherently decreases the spectral overlap
between channels, these implementations are very useful for scenarios with only a few
APs. Figure 4.1 shows that for a channel spacing of 5 or 6, all channels can be considered
non-overlapping. An overview for the different channel spacings is given in Table 5.2.

By increasing the channel spacing and decreasing the number of channels, the time
complexity reduces. Recall that the time complexity of this problem is given as O(13n)
with its base-number equal to the number of channels. By reducing the number of
channels, the time complexity decreases and the optimization performance increases.

Pre-ordering

APs that are critical in the optimization process are those that are surrounded by a large
number of APs in their neighborhood. These APs have a large chance of receiving much
interference and are therefore more important to be assigned to the best possible chan-
nels.

These critical APs have a large likelihood to be located in the center of the area.
Therefore, by ordering the APs by their distance to the center of mass (of all APs), it
is likely that the critical APs are assigned a channel in one of the first steps of the op-
timization process and will therefore have more freedom in the channel assignment in
the top of the tree.

To see the influence of pre-ordering on the computational time needed for an op-
timization process, an experiment has been performed. In Figure 5.2 the results are
shown, together with the configuration used for the experiment. Note that at this stage
there is no relation in time between pre-ordering and no pre-ordering that can be ex-
tended to general configuration settings. This experiment merely shows that there is an
advantage in pre-ordering.

Initial random solution

Starting with a random solution gives an upper bound for the optimization algorithm.
In the branch-and-bound method this upper bound is important and useful for pruning
(discarding parts of the tree).
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Parameters:
Objective max
Transmit power 20 dBm
Path loss exponent 2.86
Reference path loss (1m) 40.2 dB
Mean separation 75 m
Channel spacing 2
Quasi-random generator Niederreiter

Figure 5.2: The computational time needed to solve the channel allocation problem to
optimality when using pre-ordering and no pre-ordering

By running a number of quick random solutions, a fairly good upper bound can be
obtained to start the algorithm with. This improves the pruning process and speeds up
the optimization algorithm.

Incremental objectives

When evaluating a possible solution (or node in the tree), the (partial) objective is com-
puted. For every AP the received interference has to be calculated, which is an exhaust-
ing process. By remembering the amount of interference in a previous stage and only
calculating the interference caused by the newly assigned AP, a lot of time is saved.

This trick can only be applied to the avg objective, for which it is only necessary
to remember the total amount of interference over all APs. For the max objective, the
interference for every single AP has to be remembered, which requires too much state
information and reduces the speed of the algorithm and declines the effect of this trick.

Symmetric AP distance matrix

The amount of interference received by an AP depends on the distance from the in-
terfering source. These distances are stored in a matrix, together with the resulting
interference, which is computed before running the algorithm. Because the distance
from AP 1 to AP 2 is the same as the difference between AP 2 and AP 1, the matrix is
symmetrical.

Therefore, when computing the objective value only half of the matrix has to be eval-
uated and the resulting interference can be doubled. This reduces the computational
time of the objective function by half and can be applied to all objectives.
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Objectives avg, max
Number of APs 10 . . . 35
Channel spacing 1, 2, 3, 4, 5, 6
Number of channels 13
Transmit power 20 dBm
Path loss exponent 2.86
Reference path loss (1m) 40.2 dB
Mean separation 50 m
Random runs 100
Quasi-random generator Niederreiter

Table 5.3: Simulation parameters

5.2 Simulation results

With the proposed local best-first search algorithm a large number of simulations were
performed. The avg and max objectives are used for determining an optimal channel
allocation scheme. For both objectives it is of interest what the minimum level of inter-
ference is that can be reached, as well as the computational time to solve the problem to
optimality. The parameters used for the simulations are summarized in Table 5.3.

The simulations are performed with varying numbers of APs, in a range from 10
to 35. The locations of the APs are generated quasi-randomly, to distribute them in a
random, but uniform way. More information about quasi-random generators and the
used Niederreiter algorithm can be found in Appendix A.

To determine the decline in minimum interference and computational time when
increasing the channel spacing, this parameter is also varied. The channel spacings
range from 1 to 6, which results in different amount of channels available for allocation,
see Table 5.2.

Before each simulation a large number of random channel allocation schemes are
generated to start with a good upper bound ω. A sharp value for ω improves the prun-
ing process and reduces the computational time considerably.

An example of how channel optimization can improve the user throughput and cov-
erage area is given in Section 5.2.1. Note that the throughput is not linear related to the
objectives of minimizing the interference and is merely illustrative. Section 5.2.2 and
5.2.3 discuss the simulation results using channel optimization. These sections give the
dependencies of the received interference and computational time on the number of
APs and the channel spacing. Extra graphs are presented in Appendix B for reference.

5.2.1 User throughput and coverage area

By minimizing the received interference at each AP, the goal is to optimize the user
throughput and coverage area. These two objectives are not linear related, but a sim-
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(a) 20 APs using the same
power level and channel

(b) 20 APs with randomly as-
signed channels

(c) 20 APs using the same
power level, but with an op-
timized channel allocation (13
channels)

Figure 5.3: Comparison in throughput and coverage using a single channel, a random
assignment or channel optimization with 13 channels, showing mode 1, mode 2, mode
3, mode 4 and no throughput. The modes are defined in Section 4.1.3

plification is necessary to have a feasible time complexity. Figure 5.3 shows an example
where the throughput and coverage area are largely improved by optimizing the chan-
nel allocation. After optimization, the throughput at every position is determined by
mapping the signal-to-interference ration (SIR) to a modulation mode, see Figure 4.2.

The left figure is obtained by using the same channel for all APs, the middle figure
is a result of a random channel assignment with 13 channels and the right figure is
obtained by allocating an optimal scheme using all 13 channels.

5.2.2 Computational time

The computational time is the time needed for the algorithm to find an optimal solution
to the channel allocation problem. The time resolution for the simulations is equal to
10 ms and is measured in seconds. This gives a bad accuracy for a total number of APs
around 10, but is sufficient for larger numbers of APs.

Figure B.1 and B.3 in Appendix B shows that the time depends logarithmic on the
number of APs. The minimum computational time is given by the time resolution of 10
ms (log10(0.01) = −2).

The time dependency differs for the avg and max objective and for different values
of channel spacing. The dependencies can be represented by the steepness of the curves
(linear slope on a logarithmic scale). Figure 5.4a and 5.4b show the relation between the
slopes and various values of channel spacing.

The graphs show that there is a linear relation for the inverse of the slope (slope−1).
A higher value for the inverse slope indicates that computational time increases slower
for larger number of APs.
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Figure 5.4: Relation between slope−1 and channel spacing, where slope is the slope of the
computational time versus the number of access points on a logarithmic scale. See also
Figure B.1 and B.3

For channel spacing 1 the inverse slope is already larger for the max objective than
for avg, as shown in Figure 5.4, and also increases quicker. This shows that for larger
number of APs the computational time increases at a slower rate for the max objective,
than for the avg objective. Note that the performance of channel spacing 5 and 6 is
almost equal as they have the same total number of channels available.

Additionally, simulations showed that for different values of the mean separation
the computational time is equal. This indicates that the required time to solve a problem
to optimality mainly depends on the ratios of individual distances between the APs
and not on absolute distances. Appendix A shows that there is a minor, but negligible,
influence of the the distribution of the AP locations on the computational time.

5.2.3 Interference

In Figure 5.5a the average interference ω at a single AP is given as a function of the total
number of APs, for different channel spacings. The average interference is calculated
as the total sum of received interference at all APs divided by the number of APs, as
explained in Section 4.2. The maximum interference in Figure 5.5b shows the maximum
received interference ω at any AP.

The absolute value of the received interference depends on the mean separation be-
tween a pair of closest APs. The interference graphs will shift up (receive more inter-
ference) when the mean separation reduces and shift down when the mean separation
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Figure 5.5: Received interference at a single AP, when optimizing the sum or max ob-
jective, for channel spacing 1, spacing 2, spacing 3, spacing 4, spacing 5 and spacing 6
(dotted)

increases. The shape of the graph will be retained.
The received interference ω for all spacings grow monotonically. I.e. more APs in-

troduce more received interference at all other APs. Firstly, it is important to notice that
for both the avg and max objective, the values of ω for spacings 1, 2 and 3 are close to-
gether. Secondly, it is even more important to note that for the avg objective channel
spacing 3 outperform es spacing 2, even though there are less channels available. This
also holds for the max objective, but the performance is now more comparable with
channel spacing 2.

The assigned channel spacings results in a number of available channels for the op-
timization process. Inherently to the channel spacing size, the available channels for
spacing 2 overlap more with each other than the available channels for spacing 3. This
can explain the superior performance of channel spacing 3 over spacing 2, even though
spacing 2 has more channels available than spacing 3.

Also note that channel spacings 5 and 6 perform equally well. Therefore, it has no
apparent disadvantage to use a channel spacing of 5 instead of 6 when 12 different
channels are available. A channel spacing of 6 would reduce to 2 available channels for
a total of only 12 channels.





Chapter 6

Joint channel and power optimization -
introduction

In previous chapters an algorithm has been proposed to optimize the channel allocation
in a ’wireless city’ problem. This chapter will extent the problem by allowing variations
in the transmitter power.

First a problem description will be given, after which the objectives and the branch-
and-bound model are discussed.

6.1 Problem description

Changing the transmitting power of an AP, changes its coverage area. As APs are nor-
mally not spaced evenly and uniform over an area, it may be advantageous to change
the coverage area for each AP, to minimize overlap.

Reducing the overlap of the coverage areas of the APs, reduces the interference at
any point in the total area. A reduction in interference is desirable, because this is very
likely to increase the SIR inside the coverage area of each AP. The disadvantage of reduc-
ing the coverage area of each AP is that the total area that is covered by all APs will also
be reduced. This problem can be partially countered using different channels reducing
the interference, as discussed in Chapter 4 and 5. In this way overlap of coverage areas
will not result in interference and the total coverage area can be maximized.

In certain configurations (i.e. sets of AP locations) it can even be desirable to switch
off APs by reducing their transmitting power to zero. As the positioning of the APs is
most of the time not optimal, one or more APs can be a bottleneck to the optimization
process and omitting them can give better results.

The problem of simultaneous optimization of channel and power allocation has
largely the same properties as the channel optimization problem. The aspects discussed
in Section 4.1 therefore also concern this section. Additional information to the model
description, discussed next, is found in Section 4.1.1.

29
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6.1.1 Model description

As the optimization criterion for channel optimization was solely based on the received
interference, it is necessary to use the signal-to-interference ratio (SIR) when optimizing
both channel and power allocation.

When only interference is used as a measuring criteria, all APs would simply de-
crease their powers to their minimum to reduce the total interference. This results in a
great reduction in coverage area. Thus, to retain a coverage area that is as large as pos-
sible, the signal strength must be measured as well. Also, the interference and signal
strength will not be measured at each AP itself, because the signal has infinite strength
at this point. Therefore, the SIR, in contrast to solely interference, is measured at a cer-
tain range from the AP.

Just as in the case of using only channel optimization, measuring at all possible po-
sitions is simply a too slow process for the optimization algorithm. Therefore, the SIR is
measured at a selected number of positions. The exact determination of the measuring
locations depends on the chosen objective and is discussed in Section 6.2.

Furthermore, the variation in transmitting power of each AP cannot be continuous,
as the objective (in this case the SIR) has a non-linear dependency on the power and
will result in an infinite number of power levels. Discretizing the powers allows using
the branch-and-bound method discussed in Chapter 3. Using discrete power levels is
comparable with real-life applications where it is more feasible for APs to have a fixed
number of transmitting powers, than a continuous range of power levels.

6.2 Objectives

In contrast to the channel optimization problem, the objectives are now based on the
signal-to-interference ratio (SIR), instead of the interference solely. There are several
criteria by which the joint channel and power allocation problem can be optimized, but
in every case the SIR has to be measured. Therefore, the optimization problem is given
as:

max
x∈S

f(x) (6.1)

where x is a matrix containing channel and power allocations for each AP, S is the
solution space and f(x) is the objective function.

The objective function f(x) is based on the SIR and two variants are discussed next.

6.2.1 Single measure point per access point

As it is unfeasible to measure at each possible position, the signal-to-interference ratio
(SIR) must be measured at selected locations. In Section 5.1.2, pre-ordering of access
points showed that the APs close to the center of mass are more critical than the rest.
Therefore, with each AP there is a measuring point located towards the center of mass
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(of all APs) at a certain range. At these points the SIR is calculated:

SIRi(x) =
Si∑

j 6=i Ii,j(x)
(6.2)

where Si is the signal from APi and Ii,j(x) is the interference at APi’s measuring point
received from APj .

The objective function to be maximized is given as the minimum over all SIRs:

f(x) = min
i

SIRi(x) (6.3)

6.2.2 Multiple measure points per access point

The previously discussed objective serves optimize the critical measuring points. This
objective serves to minimize the total overlap by measuring the SIR at multiple points
for each AP. Each point is located at a certain range towards one of the other APs. The
SIR of each AP can be specified in three different ways: the minimum of all points, the
maximum of all points and the average of all points. Mathematically the SIR for APi is
denoted as:

SIRi(x) = min
k

Si∑
j 6=i Ii,j,k(x)

(minimum) (6.4)

SIRi(x) = max
k

Si∑
j 6=i Ii,j,k(x)

(maximum) (6.5)

SIRi(x) =
1

k

∑
k

Si∑
j 6=i Ii,j,k(x)

(average) (6.6)

where Si is the signal from APi and Ii,j,k(x) is the interference at APi’s kth measuring
point received from APj .

The objective function is again given as the minimum over all SIRs:

f(x) = min
i

SIRi(x) (6.7)

6.3 Branch-and-bound model

As with the channel allocation problem described in Chapter 4, the number of depths
is still equal to the total number of APs. Each AP now only has to be assigned both a
channel and a transmit power. As a result of these multiple power levels the number of
nodes at each depth in the branch-and-bound tree is multiplied by the number of power
levels. A tree where each AP can select one out of two available channels and one out
of two power levels is shown in Figure 6.1. The resulting time complexity is:

O((c · p)n) (6.8)
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Figure 6.1: Branch-and-bound tree: joint channel and power optimization

where n is the number of APs, c the number of channels and p the number of power
levels.

A model summery is given here:

• x: vector containing the channels that are assigned to the APs

• c(x): there are no constraints for the channel optimization problem, thus c(x) will
always return true

• S: the solution space consists of all possible combinations of channel assignments
to the APs

• single measuring point: this objective function f(x) determines the signal-to-inter-
ference ratio (SIR) towards the center of mass, given a certain x ∈ S

• multiple measuring points: this objective function f(x) determines the signal-to-
interference ratio (SIR) of each AP from multiple points, given a certain x ∈ S

• max f(x): the total objective is to find the x ∈ S that maximizes f(x)

• time complexity: the computational time required is O((c · p)n), with n the number
of APs, p the number of power levels and c the number of channels (13 in most of
Europe and the UK)



Chapter 7

Joint channel and power optimization -
implementation and results

In this chapter preliminary results are presented on joint channel and power optimiza-
tion. That is, some introductory experiments have been performed of which the results
will be discussed. These results give an indication of the application of power optimiza-
tion and can be used for further research.

The implementation of the optimization algorithm is presented first, after which the
simulation results are discussed. The simulation results are divided in a general part, for
which statistics have been applied on random configurations, and a part about specific
configurations.

7.1 Implementation

The objectives discussed in Section 6.2 are implemented in the optimization algorithm.
Various number of power levels can be used in the optimization process, but using too
many will quickly increase the time complexity and degrade the performance. Two or
three power levels already show improvements over a single transmit power.

The absolute transmit powers are generated by taking a starting level and multiply-
ing this with a constant factor for each subsequent level. Both the starting level and the
multiplicative factor can be specified.

The range at which the measurement points are located can be set manually, but
is recommended to set to about 1

3
of the mean separation. A range that is too short

will result in every AP reducing its power level to the minimum and thus reduces its
coverage area, and a range too large will result in the measuring point being outside the
coverage area of the AP and therefore disabling the optimization process.

33
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Algorithm 3 MAXIMIZE()
Parameters:

Integer depth > 0, initialized to 0
Integer n, equal to the number of access points
Vector xpwr of length n, containing the transmit power assignment
Vector xch of length n, containing the channel assignment
Vector x = xch : xpwr of length 2n, the catenation of xch and xpwr

Vector z of length 2n, remembering the x that gave the best f(x) so far
Integer num channels , containing the available number of frequency channels
Integer num power levels , containing the available number transmit power levels
Vector power of length num power levels , containing the actual transmitter powers
Local matrix child of size [n x 3], containing α(x), transmit power and channel for evaulated child
nodes
Function α(x), representing an upper bound for f(x)
Real ω, representing the lower bound, initialized to minus infinity

1: depth + +
2: at leaf = false
3: m = 0
4: for i = 1 to num power levels do
5: xpwr[depth− 1] = power [i]
6: for j = 1 to num channels do
7: if depth == 1 and 2j > num channels then
8: break
9: end if

10: xch[depth− 1] = j
11: if α(x) < ω then
12: child[m][0] = α(x)
13: child[m][1] = xpwr[depth− 1]
14: child[m][2] = xch[depth− 1]
15: m+ +
16: if depth == n then
17: at leaf = true
18: ω = α(x)
19: z ← x
20: end if
21: end if
22: end for
23: end for
24: if !at leaf then
25: permute rows of child so that column 0 is decreasing
26: for row in child do
27: xpwr[depth− 1] = row [1]
28: xch[depth− 1] = row [2]
29: MAXIMIZE()
30: end for
31: end if
32: depth −−
33: return
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Channel Joint channel
avg max and power

Complementary solutions x x x
Channel spacing x x x
Pre-ordering x x x
Initial random solution x x x
Incremental objectives x
Symmetric AP distance matrix x x

Table 7.1: Programming tricks for joint channel and power optimization

7.1.1 Branch-and-bound: local best-first search

The local best-first branch-and-bound method used for the channel optimization pro-
blem is also used for the joint optimization problem discussed in this chapter. This
model has proved itself in the previous results and the channel optimization algorithm
can be easily extended to the joint optimization algorithm. The pseudo-code for the
local best-first search method that includes power allocation and which maximizes the
SIR is given in Algorithm 3.

7.1.2 Programming tricks

Several tricks discussed in Section 5.1.2 and used for the channel optimization pro-
blem are also applicable to the joint channel and power optimization problem. Table
7.1 shows the applicability of each programming trick. Two of the six tricks cannot be
applied and are discussed next.

Incremental objectives - the objective functions in Equations 6.3 and 6.7 are unsuitable
to update incrementally, because of the state information required. Compare this with
the max objective for the channel optimization problem in Equation 4.6.

Symmetric AP distance matrix - this matrix was symmetric as a result of equal powers.
Now the transmit powers are varied this property is no longer valid, because the inter-
ference caused by APi to APj is not necessarily equal to the interference caused APj to
APi by any more.

7.2 Simulation results

Several simulations have been performed. The objectives with single or multiple mea-
suring points are used to determine an optimal channel and power allocation scheme.
For both objectives it is of interest what the maximum signal-to-interference ratio (SIR)
is that can be achieved, as well as the computational time to perform the optimization.

In Section 7.2.1 random configurations are discussed, generated by a quasi-random
number generator using the Niederreiter algorithm, see Appendix A.
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Parameters:
Transmit power 20 dBm
Power increase factor 0.80
Path loss exponent 2.86
Reference path loss (1m) 40.2 dB
Mean separation 50 m
Measuring range 15 m
Channel spacing 3
Quasi-random generator Niederreiter

Figure 7.1: Performance of different joint channel and power optimization objectives:
using a single measuring point and multiple points (min), (avg) and (max)

In Section 7.2.2 a number of special configurations are tested. Some of these cases
consider real-life configurations, while others consider a special case by allowing trans-
mitter powers equal to zero (i.e. turned off).

7.2.1 Random configurations

In Figure 7.1 all objectives discussed in Section 6.2 show similar behavior. The objectives
using multiple points per AP clearly represent their respective way of determining the
SIR, as the max has the highest values, avg intermediate values and min the lowest val-
ues. The objective values of using a single point is situated close to the min. This shows
that using multiple measuring points per AP shows no apparent advantages at this
time, but does increase the time complexity.

Figure 7.2a shows the improvement when access points can transmit at multiple
power levels. From a theoretical point of view it is expected that when an AP can trans-
mit at multiple powers, the objective will always be equally good or better. Simply,
because the same channels and power levels are available as well, and can therefore
always choose a solution with one power level.

As the number of APs increases the objective ω show a degradation, which is also
seen for using channel optimization solely. In Figure 5.5 the total interference increases
slowly with the number of APs, as more APs induce more total interference. Note that
the degradation is only a few dB and starts to level off for larger number of APs, as in
Figure 5.5.

The computational time related to the time complexity increases when the number
of transmit powers increases (see Equation 6.8). Figure 7.2b shows the increase in time
with an increasing number of APs for 1, 2 and 3 transmit power levels. The increase
in time complexity becomes clear when comparing the computational time for 2 power
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Figure 7.2: Averages over quasi-random configurations with three numbers of power
levels: 1, 2 and 3

levels with Figures B.1b and B.3a. The times are comparable, but a reduced number of
channels (i.e. larger spacing) is used for joint channel and power optimization.

7.2.2 Specific configurations

Soho

One of the locations where BT deployed a number of wireless access points is the Soho
area in London. Figure 7.3 shows an overview of this area. As an illustration a small
part consisting of 10 APs has been taken to optimize, using joint channel and power
allocation.

Figure 7.4a and 7.4b show the change in objective and throughput when multiple
power levels are used. Below each figure the objective value is given, together with
the coverage area for modulation modes 3 and 4 (see Section 4.1.3). The performance
increase is only small as we have seen before for the random configurations (7.2a). The
increase is time is however substantial. Even though this example with two fixed power
levels shows little improvement, it is possible to improve the objective by more extreme
power control, as discussed in the next section.

Extreme power control

An extreme form of power control is reducing the power to zero, i.e. turning the AP
off. This form of power control is especially useful if there is a single bottleneck, which
prohibits the optimization process from finding a better solution. Depending if the AP
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Figure 7.3: Soho interference graph that connect potential interfering access points

(a) 1 transmit power (b) 2 transmit powers (c) 2 transmit powers, omitting
1 access point (AP4)

Min. SIR: 24.18 dB
Mode 3 or 4: 0.3625%
Mode 4: 0.2852%
Time: 0.02s

Min. SIR: 24.49 dB
Mode 3 or 4: 0.3761%
Mode 4: 0.2920%
Time: 1.26s

Min. SIR: 26.23 dB
Mode 3 or 4: 0.4402%
Mode 4: 0.3368%
Time: 0.24s

Figure 7.4: Change in coverage area when using an extra power level and using extreme
power control
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has a critical role in the optimization process the solution may change a lot or not at all.
The option to omit certain APs and to allow the optimization algorithm to choose which
APs to use can improve the final objective considerably.

This option has not yet been implemented in the optimization algorithm, because
this imposes some difficulties. As an AP is turned off its measuring point should not
be included when determining the objective value. Otherwise, the objective would be
largely degraded, as this point has no signal and therefore a very bad SIR value. On
the other hand, when turning off APs the total interference will obviously decrease.
Therefore, by turning off all but one AP, the best result in SIR will be achieved, but not
in coverage. Thus, a counter measure to retain a large coverage area is necessary.

Still, to show the advantages of turning off one AP, a manually modified experiment
has been performed. For the Soho configuration discussed previously one of the APs
is turned off. The result in shown in Figure 7.4c, where the increase in throughput and
coverage can be seen, with obviously a better value for the minimum SIR as well. Thus
by removing the bottleneck, an overall better performance is obtained. A reduction in
computational time is found as a result of having to optimize one less access point.





Chapter 8

Conclusions

This report shows a study on simultaneous channel and power optimization. This com-
binatorial optimization (CO) problem is tackled in a structured way by first solving the
simpler problem of channel optimization solely. The problem is then extended to joint
channel and power optimization allocation.

An optimization algorithm has been created to solve both the channel and joint chan-
nel and power optimization problems. A large number of options have been imple-
mented to make it a general purpose algorithm, applicable to a large variety of con-
figurations. The main options are: generating a quasi-random configuration or using
locations from a file, the log-distance path loss model, adjustable transmit power levels
and adjustable number of channels and channel spacing.

Local best-first search

The problem of channel or joint channel and power optimization is a NP CO problem
and therefore increases quickly in size when the number of access points (AP) increase.
A modified branch-and-bound algorithm is proposed to solve the problem as quickly
and efficient as possible. This local best-first algorithm is a combination of a depth-
first and a best-first search. The proposed algorithm combines the properties of finding
a feasible solution quickly and proceeding with the best (partial) solution. A quick
feasible solution improves the pruning process, and continuing with the best solution
allows the algorithm to find the optimal solution as quick as possible.

In the process of implementing the optimization algorithm, a number of speed-up
tricks are used to increase the performance even further. These tricks are: omitting
complementary solutions, increase the channel spacing, pre-ordering of the APs, using
random initial solutions, using incremental objectives and using a symmetric AP dis-
tance matrix. All these tricks are described extensively in Chapters 5 and 7 and also
show in an applicability matrix for all discussed objective functions.
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Channel optimization

The problem of channel allocation is based on the amount of received interference at
each AP. Two objectives have been discussed, which are to minimize the average inter-
ference (avg) and to minimize the maximum interference (max).

For both algorithms, channel spacings 1, 2 and 3 offer little difference in objective
value, but do differ in time complexity. Moreover, a problem that uses a larger channel
spacing can be solved in less time. An interesting result is that for both objectives a
channel spacing of 3 outperforms a channel spacing of 2. This makes it advantageous
to implement a channel spacing of 3, which results in only a little degradation in perfor-
mance compared to channel spacing 1, but greatly reduces the computational time. By
increasing the channel spacing further than 3, the performance degrades substantially.

The mean separation, which is considered 50 meters, between the two closest APs
has no influence on the optimization process. The final interference levels change in
absolute value, but the resulting channel allocation schemes are equal. This is a result
of equal degradation in both signal and interference level, i.e. the ratio stays the same.

The simulation results show that configurations up to 35 access points can be opti-
mized within reasonable time. That is, depending on the objective and channel spacing
an optimal solution can be found within a day on a 64-bit 2.2 GHz desktop computer.

Joint channel and power optimization

In contrast to the channel optimization problem, when optimizing channel and power
simultaneously, both the amount of interference and the signal level are important. For
this problem the signal-to-interference ratio (SIR) has to be maximized.

Both objectives that have a single measuring point per AP and objectives that have
multiple measuring points per AP have been implemented. The results show that using
more than one measuring point has no apparent advantages over a single measuring
point. Most of the times the objectives are equal and only differ in the computational
time. Note that these results apply to the specific objective functions that have been
implemented.

Optimization using a small number of transmit power levels (i.e. 2 or 3) shows only
a minor improvement in the SIR for each objective. It is however possible to obtain
larger improvements by allowing a transmit power of zero. This indicates that more
radical power control or having more flexibility in transmit power levels (i.e. a wider
range or more discrete values) is able to improve the objective substantially. The exact
implementation and consequences for the time complexity are still to be determined.

Using fixed measuring points results in SIR values that are optimized at these spe-
cific locations. Therefore, the positions that are most likely to receive the most inter-
ference (which are the measuring points) are optimized. At this time the results show
no guarantee that optimizing these locations improves the overall SIR (over the whole
map). Mapping SIR values to user throughput maps shows also that there is no linear
relation between the objective functions and the overall throughput performance and
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can change independently of the objective value. However, using a more advanced
or extreme control of power can substantially improve the performance, as seen when
omitting APs.

Recommendations

The problem of channel optimization has almost completely been covered in this re-
port. However, for joint channel and power optimization still a lot of research that can
be done. There are a number of directions that are interesting to pursue and will be
discussed next.

The current optimization algorithm has fixed measuring points, which are not re-
lated to the transmitter power. This prohibits in some way the algorithm to choose
power levels that are decreased a lot, because this results in a decreased signal at the
measuring point decreases. By dynamically changing the measuring range as a func-
tion of the transmit power a better algorithm is obtained.

For a large number of problems the channel allocation scheme that is obtained using
joint channel and power optimization is equal to the one obtained by channel optimiza-
tion solely. In this case the time complexity can be reduced largely by splitting the
channel and power optimization process. An optimal channel allocation scheme can
be obtained using channel optimization solely and in the next step the objective can be
improved further by varying the transmitter power levels.

Another way of splitting up the joint optimization process is by first optimizing the
power allocation in such a way that the area covered by each access point is equal. This
has the advantage of distributing the load equally over all APs. After that an optimal
channel allocation scheme can be found using the channel optimization process. By
splitting up the process the time complexity is again reduced largely, compared to a
joint objective.

The last recommendation concerns both channel and joint channel and power op-
timization. For both optimization algorithms the simulations showed that when the
number of access points increased the objective value starts to level off. This is related
to the mean separation between the two closest access points. When saturating the area
with access points, but retaining the mean separation it is probable that there is a bound
on the objective value. Knowing and relating this bound to different values of the mean
separation allows to give a good prediction on configurations with a known mean sep-
aration.





Appendix A

Quasi-random number generators

Quasi-random number generators are used to generate access point (AP) locations in a
square area. Random number generators are useful, because it allows us to do statistics
over a large number of simulations.

APs are normally not located close together, as this would have no advantage and
only cause a lot of interference to each other. Therefore, pseudo-random generators are
a little too random. A scatter plot of a pseudo-random number generator has places that
are relatively undersampled and other places have clusters of points. The quasi-random
number generator tries to maintain a uniform density of coverage and is therefore more
useful for this application.

A.1 GNU Scientific Library

The GNU Scientific Library (GSL) offers a number of quasi-random number generators
that can be implemented in a C program [5]. These generators are: Niederreiter [2],
Sobol [1], Halton [6, 8] and reverse Halton [6, 8].

Figure A.1 shows three scatter plots with AP locations, using the Niederreiter algo-
rithm (used for all simulations). The average separation between the two closest APs is
approximately 50 meters.

A.2 Algorithm perfomance

The algorithms that specify the quasi-random number generators, influence the com-
putational time and final result for any application and in this case the channel opti-
mization problem. A simulation shows the influence on the computational time and
minimum amount of received interference, see Figure A.2. The simulation parameters
are given in Table A.1.

The figures show little change when using different algorithms and therefore indi-
cates that the optimization process is roughly independant of the AP distribution.
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Figure A.1: Quasi-random generated access points locations, using the Niederreiter al-
gorithm
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Figure A.2: The computational time and minimum received interference in a channel
allocation problem for 4 different quasi-random algorithms: Niederreiter, Sobol, Halton
and reverse Halton.

Objective max
Transmit power 20 dBm
Path loss exponent 2.86
Reference path loss (1m) 40.2 dB
Mean separation 50 m
Channel spacing 6
Pre-ordering true

Table A.1: Simulation parameters for quasi-random number generators



Appendix B

Graphs channel optimization

In Chapter 5 the results for the channel allocation problem for wireless cities are dis-
cussed. The simulation results have been combined into a smaller number of figures to
show the essential graphs.

This appendix shows extra graphs for the channel allocation problem. For both the
avg and max objective the results on computational time and received interference are
shown for every value of channel spacing.

Each figure will show the graphs for channel spacing 1 to 6:

time omega
avg Figure B.1 Figure B.2
max Figure B.3 Figure B.4

Figure B.1 and B.3 show that the computational time depends logarithmically on the
number of access points (APs). When the channel spacing increases the time graphs
start at a lower point and the slope is less steep, also explained in Section 5.2.2.

Figure B.3f shows a very wild behaviour which indicates that for higher values of
the channel spacing (i.e. few channels available) the AP locations heavily influence the
performance of the algorithm.

The received interference in Figure B.2 and B.4 increases quickly in the beginning
when the number of access opints increases, but levels off for higher number of APs.
The received interference tends to saturate when the number of APs keeps increasing
with a mean separation of 50 meters between the two closest APs.
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Figure B.1: Channel optimization avg: computational time
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Figure B.2: Channel optimization avg: received interference
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Figure B.3: Channel optimization max: computational time
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Figure B.4: Channel optimization max: received interference
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