Optimal railway-trip planning

Keith Briggs
keith.briggs@bt.com

Mobility Research Centre, BT Innovation \& Design http://keithbriggs.info

BT~

NET2009 Warwick 2009-09-30 11:00

BT Research - Adastral Park

Coventry, all departures

$$
\begin{aligned}
& q=1.215 \\
& \beta=0.217
\end{aligned}
$$

Birmingham, all departures

$$
\begin{aligned}
& q=1.263 \\
& \beta=0.329
\end{aligned}
$$

Leicester, all departures

$q=1.186$
$\beta=0.183$

Coventry to Birmingham

$$
\begin{aligned}
& q=1.111 \\
& \beta=0.207
\end{aligned}
$$

Coventry to Euston

$$
\begin{aligned}
& q=1.127 \\
& \beta=0.294
\end{aligned}
$$

The q-exponential law

- Exponential law: $f_{\beta}(t) \propto \exp (-\beta t)$
- $e_{q, \beta}(x):=(1 / Z)(1+\beta(q-1) x)^{1 /(1-q)}$,
$\beta>0,1<q<2$
- $Z:=\frac{1}{\beta(2-q)}$
- mean $\mu:=\frac{1}{\beta(3-2 q)}$
- $\lim _{q \rightarrow 1} e_{q, \beta}(t)=\exp (-\beta t) / Z$
- large q gives a power-law (long tail)

The problem loosely stated

- Given: a transport network with timetabled services on each edge (leg)
- Given: a model of the distribution of delays
- Given: a probabilistic optimality criterion (such as the chance of a final delay more than 10 minutes is less than 5\%)
- To find: some routes satisfying the criterion
- To find: the latest departure time satisfying the criterion

The problem formalized

- Given: a weighted digraph g, a timetable $\tau\left(n_{0}, n_{1}\right)$ for each arc $\left(n_{0}, n_{1}\right) \in g$, an arrival time α, and parameters $\tau>0, \epsilon>0$.
- To find: a route ρ and maximal departure time t such that $\operatorname{Prob}[$ arrival after $\alpha+\tau]<\epsilon$

Stochastically short paths

- Given a graph with RVs as edge weights and two nodes, we could:
- minimize expected time to travel between the nodes
- find a route which maximizes the probability that it is shortest
- find the route of shortest mean time, subject to some condition on the variance
- ...

Short paths in a weighted digraph

Bath to Manchester, shortest mean time

Bath to Manchester, second shortest mean time

Markov model of train transitions

Markov model of train transitions

- Idea: the states of the system are the particular trains the passenger is on
- Train-changing rule: the passenger always takes the first train going along his pretermined route (no dynamic recomputation of routes)
- 2-tuple indices: $(i, j)(i \geqslant 0,-\infty<j<\infty)$ means that on leg i, the passenger took train j

General setting for one train transition

- Given: a sequence of independent real-valued $\mathrm{RVs} X_{i}(-\infty<i<\infty)$ such that $\operatorname{supp}\left(X_{i}\right)=\left(t_{i}, \infty\right)$ with t_{i} a strictly increasing (time) sequence.
- For a given time t find (for each i) the probability $p_{i}(t)$ that X_{i} is the smallest value such that $X_{i}>t$.
- That is, if $j \neq i$, either $X_{j}<t$, or $X_{j}>X_{i}$.

Example for $n=3$

- Let $f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) f_{3}\left(x_{3}\right)$ be the joint density.
- Then $p_{i}(t)=\iiint f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) f_{3}\left(x_{3}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}$ on a suitable domain.
- e.g. $p_{1}(t)=\operatorname{Pr}\left[X_{2}<t, X_{3}<t, t<X_{1}\right]+\operatorname{Pr}\left[X_{2}<\right.$ $\left.t, t<X_{1}, X_{1}<X_{3}\right]+\operatorname{Pr}\left[t<X_{1}, X_{1}<X_{2}, X_{1}<X_{3}\right]$
- $\operatorname{Pr}\left[X_{2}<t, X_{3}<t, t<X_{1}\right]=$
$\int_{x_{2}<t} \int_{x_{3}<t} \int_{t<x_{1}} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) f_{3}\left(x_{3}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}$

Special case - shifted exponentials

- $f_{i}\left(x_{i} ; t\right)=H\left(t>t_{i}, \lambda_{i} \exp \left(-\lambda_{i}\left(x-t_{i}\right)\right), 0\right), i=1,2,3, \ldots$
- $\operatorname{Pr}\left[X_{1}<t<X_{0}<X_{2}\right]=-H\left(t<d_{2}, 0, d_{2}<t,-\exp \left(-\lambda_{2}(t-\right.\right.$ $\left.\left.\left.d_{2}\right)\right)+1\right)\left(-H\left(t<d_{1}, 0, t<d_{3}, \exp \left(-\lambda_{1}\left(t-d_{1}\right)\right)-1, d_{3}<\right.\right.$ $t,\left(\lambda_{1} \exp \left(-\lambda_{1} t+\lambda_{1} d_{1}+\lambda_{3} d_{3}-\lambda_{3} t\right)+\exp \left(\lambda_{1}\left(d_{1}-d_{3}\right)\right) \lambda_{3}-\right.$ $\left.\left.\lambda_{1}-\lambda_{3}\right) /\left(\lambda_{1}+\lambda_{3}\right)\right) \exp \left(\lambda_{1} d_{3}\right) \lambda_{1}-H\left(t<d_{1}, 0, t<\right.$ $d_{3}, \exp \left(-\lambda_{1}\left(t-d_{1}\right)\right)-1, d_{3}<$ $t,\left(\lambda_{1} \exp \left(-\lambda_{1} t+\lambda_{1} d_{1}+\lambda_{3} d_{3}-\lambda_{3} t\right)+\exp \left(\lambda_{1}\left(d_{1}-d_{3}\right)\right) \lambda_{3}-\right.$ $\left.\left.\lambda_{1}-\lambda_{3}\right) /\left(\lambda_{1}+\lambda_{3}\right)\right) \exp \left(\lambda_{1} d_{3}\right) \lambda_{3}+\exp \left(\lambda_{1} d_{1}\right) \lambda_{3}-$ $\left.\lambda_{1} \exp \left(\lambda_{1} d_{3}\right)-\lambda_{3} \exp \left(\lambda_{1} d_{3}\right)\right) /\left(\lambda_{1}+\lambda_{3}\right) \exp \left(-\lambda_{1} d_{3}\right)$
- Here $H(C, T, F)$ is T if C is true, else F

IPS \rightarrow PBO \rightarrow DON \rightarrow MAN dep. 1200

$\mathrm{IPS} \rightarrow \mathrm{PBO} \rightarrow \mathrm{DON} \rightarrow$ MAN dep. 12:00

```
IPS 12:02 -> PBO 13:37 0.8380
    PBO 13:46 -> DON 14:43 0.7731
        DON 14:57 -> MAN 16:36 p=0.7377
        DON 15:55 -> MAN 17:37 p=0.0353
    PBO 13:58 -> DON 14:53 0.0466
        DON 14:57 -> MAN 16:36 p=0.0405
        DON 15:55 -> MAN 17:37 p=0.0061
    PBO 14:25 -> DON 15:35 0.0173
        DON 15:55 -> MAN 17:37 p=0.0169
        DON 16:42 -> MAN 18:02 p=0.0004
    PBO 14:46 -> DON 15:43 0.0009
        DON 15:55 -> MAN 17:37 p=0.0009
IPS 12:32 -> PBO 14:07 0.1551
    PBO 14:25 -> DON 15:35 0.1505
        DON 15:55 -> MAN 17:37 p=0.1468
        DON 16:42 -> MAN 18:02 p=0.0036
    PBO 14:46 -> DON 15:43 0.0041
        DON 15:55 -> MAN 17:37 p=0.0039
        DON 16:42 -> MAN 18:02 p=0.0002
```


Algorithm

- Phase 0 : find set P of the 3 or 4 paths of shortest mean time
- Phase 1: for each path $p \in P$, and for a given start time, propagate all probabilities through the graph using the Markov model
- Compute probability $\rho=\operatorname{Prob}[$ arrival after $\alpha+\tau]$
- If $\rho>\epsilon$, repeat with an earlier start time.

IPS \rightarrow MAN arr. 19:00

Iter 1: Probability of arriving by $19: 00$ is 99.9%		
Ipswich	$12: 02$-> Peterborough	$13: 37$
Peterborough	$14: 56 ~->~ D o n c a s t e r ~$	$15: 55$
Doncaster	$16: 42->$ Manchester Piccadilly	$18: 02$

Iter 2: Probability of arriving by 19:00 is 98.3\%
Ipswich 12:02 -> Peterborough 13:37
Peterborough 14:56 -> Doncaster 15:55
Doncaster 16:53 -> Sheffield 17:20
Sheffield 17:40 -> Manchester Piccadilly 18:36

Iter 3: Probability of arriving by 19:00 is 95.7\%
Ipswich 12:02 -> Peterborough 13:37

Peterborough 14:56 -> Doncaster 15:55
Doncaster 17:01 -> Leeds 17:36
Leeds 17:55 -> Manchester Piccadilly 18:49

Reference

K M Briggs \& C Beck, Modelling train delays with q-exponential functions Physica A 378, 498-504 (2007).

