Asynchronous distributed algorithms

Keith Briggs

Keith.Briggs@bt.com

more.btexact.com/people/briggsk2

Bristol Engineering Maths 2003 Dec 02 1100

Typeset 2003 November 28 17:06 in $\texttt{pdfIAT}_{\!E\!X}$ on a linux system

Outline

- \star Motivation for asynchronous distributed algorithms (ADAs)
- ★ Simulation techniques
- ★ Some real examples
- ★ Future work

Models of computing

- ★ Single CPU + RAM
- ★ Multiple CPU + RAM
- ★ Cluster (Beowulf, mosix)
- \star ZetaGrid 💦
- ★ Asynchronous distributed algorithms (ADAs)
- \star internet 🛛 🛛
- * • •

Asynchronous distributed model

- * Network of identical nodes, with message queue
- \star Each knows only its neighbours
- \star Each performs the same subalgorithm \blacksquare
- ★ Each runs asynchronously wrt neighbours
- \star Protocol: a finite set of pre-specified messages
- ★ Indefinite delay before reply to message

Theme: atheism

Cooperation of nodes

Required: to perform some useful global actions:

- ★ Reboot system
- ★ Detect node failures
- ★ Count total number of nodes
- \star Name nodes and elect leader
- \star Build spanning trees 🛛 🖡
- ★ Find shortest paths
- * Compute and optimize network flows

Simulating an ADA on one processor

In decreasing order of weight:

- \star unix processes 🛛 🖡
- \star kernel threads 🛛 🖡
- ★ threads in python, java etc.
- \star other tricks

Python threads

import threading

Counting all nodes

- ★ All nodes asleep except 0, who is awake and sends to all neighbours
 - if receiver awake: return 'reject'
 - if receiver asleep:
 - ▶ wake up and relay message to neighbours
 - ▷ return number of nodes from relay replies
 - ▶ receiver returns sum+1 to requester

Shortest path routing to node 0

Asynchronous Bellman-Ford algorithm:

$$x(i) \gets \min_{j \ \text{e neighbours of node } i} x(j) + d(j)$$

where:

- x(i) is node *i*'s current estimate of the shortest path to node 0
- d(j) is the distance to node j (one hop)

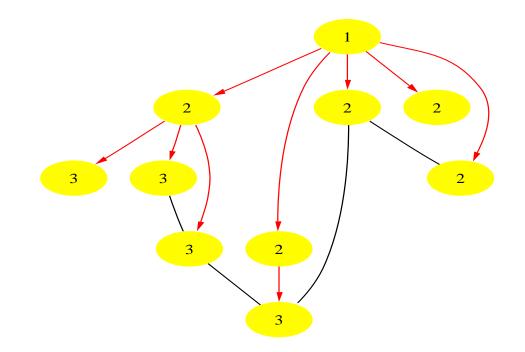
Termination?

Building a spanning tree

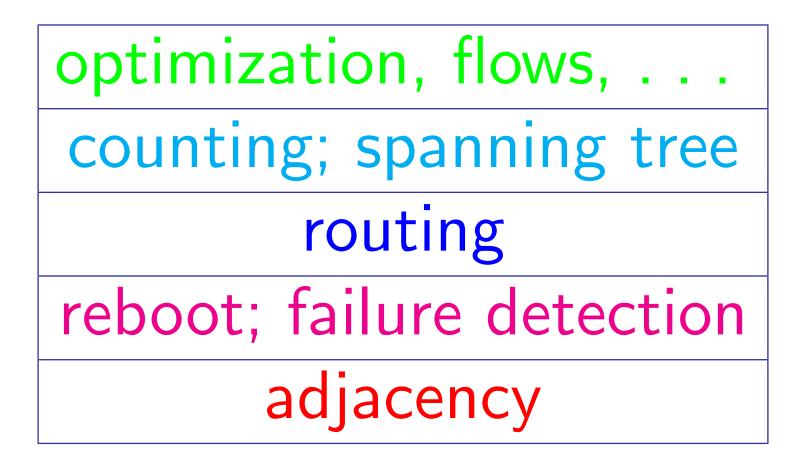
Root node has weight 1

while 1:

- node sends its weight to neighbours
- if receiver is unweighted, adopt sender's weight+1
- else if receiver's weight > sender's weight+1
 - ▶ receiver adopts new parent



Layering



Graph centre - definitions

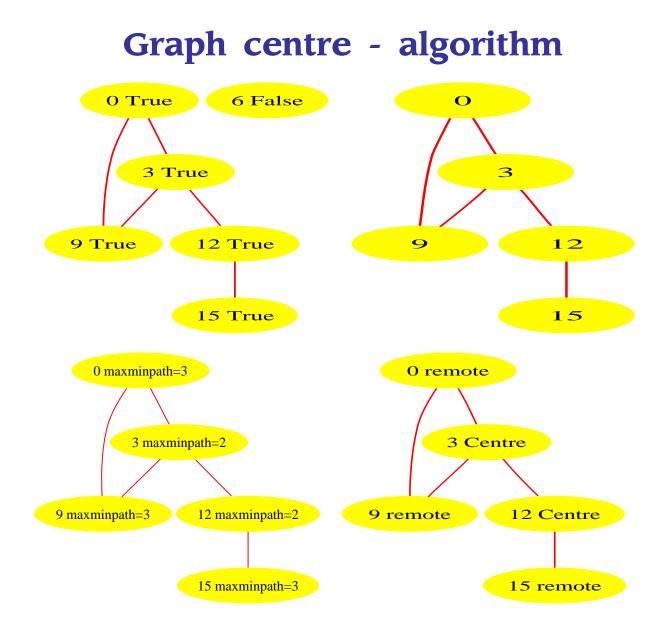
- $\star D = d(x, y) =$ distance matrix of graph G
- ★ The eccentricity of a vertex x in G and the radius $\rho(G)$ are defined as $e(x) = \max_{y \in V} d(x, y)$ and $\rho(G) = \min_{x \in V} e(x)$
- \star The centre of G is the set

$$C(G) = \{ x \in V \mid e(x) = \rho(G) \}.$$

 ${\cal C}({\cal G})$ is the solution of the emergency facility local problem

- ★ The status d(x) of a vertex and the status $\sigma(G)$ of the graph G are defined as $d(x) = \sum_{y \in V} d(x, y)$ and $\sigma(G) = \min d(x)$

$$M(G) = \{ x \in V \mid d(x) = \sigma(G) \}$$



top left: connectivity; top right: connected partition bottom left: eccentricity; bottom right: centre

Electrical circuits: theory

- \star Digraph G with r_k the resistance of edge k
- ★ Problem 1: translate graph topology (known only locally) to circuit equations
- ★ Problem 2: solve these equations
- \star Apply to the circuit:
 - Kirchhoff's current law (KCL)
 - Kirchhoff's voltage law (KVL)
 - Ohm's Law (ΩL)
- \star Let v be the voltage vector and i the current vector (in edge space)

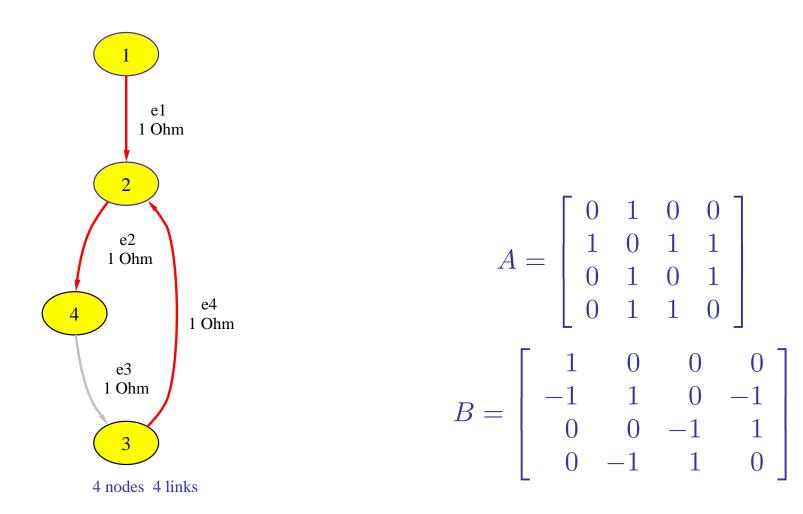
Electrical circuits: more theory

- \star A is the adjacency matrix and D is the degree matrix
- **★** Find *incidence matrix* B from $BB^{\mathsf{T}} = L = D A$
- **\star** Then KCL is Bi = 0
- \star Build a spanning tree T \blacksquare
- \star Edges in T are *branches*, other edges are *chords*
- ★ Each chord has a *fundamental cycle* (FC)
- ★ C: matrix with one column for each edge, with elements being the coefficients of the corresponding FC in the edge space (only chords are really needed)
- **★** Then KVL is $C^{\mathsf{T}}v = 0$
- \star ΩL is $v_k = i_k r_k$

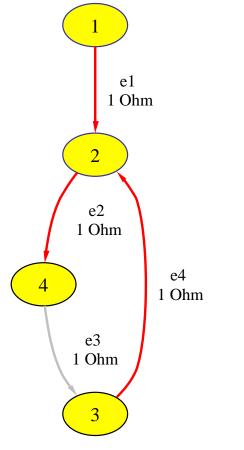
Electrical circuits: the solution!

- \star i = Yv, where Y is the conductance matrix
- ★ $Y = -C C^{+R}$, $R = \text{diag}(r_1, r_2, ...)$
- ★ C^{+R} is the weighted Moore-Penrose pseudo-inverse of C with weight R. If $R = W^{\mathsf{T}}W$, then $C^{+R} = (WC)^{+}W^{\mathsf{T}^{-1}}$
- $\star \ C^{+R}CC = C \ \text{and} \ (RCC^{+R})^T = RCC^{+R}$
- \star I have developed an algorithm for incremental computation of $C^{+R},$ which can be applied as the columns of C are found by remote nodes

Electrical circuits: example



Electrical circuits: example continued



 $C = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ $Y = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1/3 & -1/3 & -1/3 \\ 0 & -1/3 & -1/3 & -1/3 \\ 0 & -1/3 & -1/3 & -1/3 \end{bmatrix}$

4 nodes 4 links

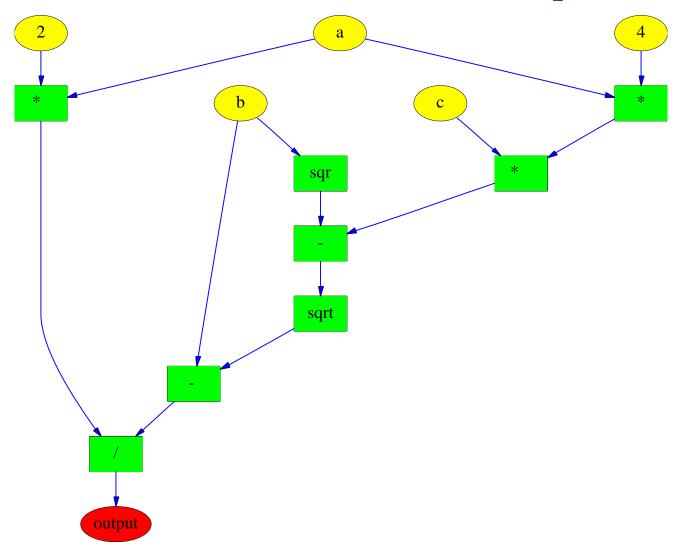
Distributed linear algebra

- ★ Example problem: compute matrix A^{-1} , when elements A_{ij} are received in random order and at random times from distant nodes
- \star Require A^{-1} to be correct at all times \blacksquare
- \bigstar Generically A is singular at most times, but we can use the Moore-Penrose pseudo-inverse A^{\dagger}

```
 AA^{\dagger}A = A 
A^{\dagger}AA^{\dagger} = A^{\dagger} 
(AA^{\dagger})^{T} = AA^{\dagger} 
(A^{\dagger}A)^{T} = A^{\dagger}A
```

- \bigstar Update formulas are available which require storage only of the current A and A^{\dagger}
- \star cf. stream computing model

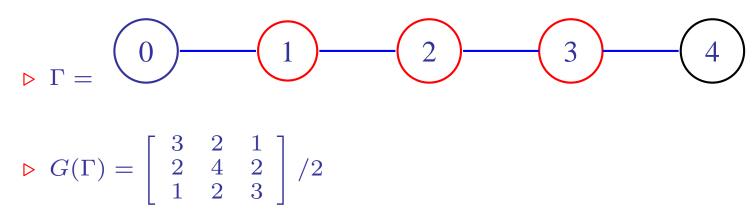
Exact real arithmetic example



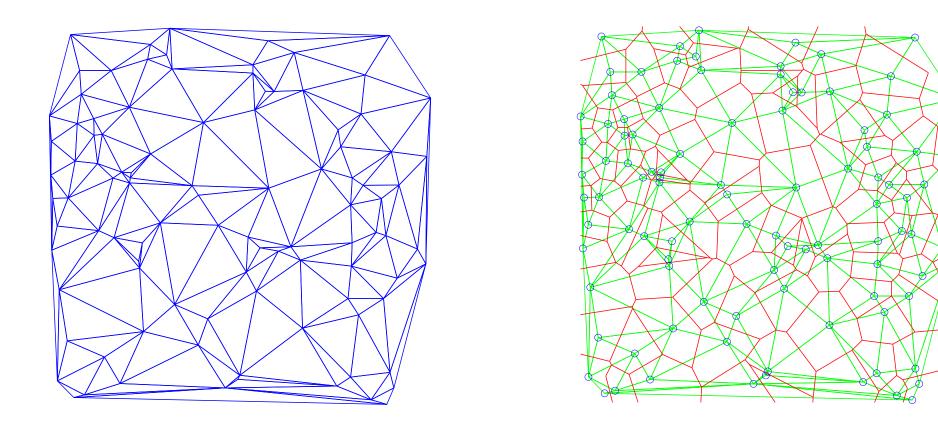
more.btexact.com/people/briggsk2/XR.html

Dynamical processes on graphs

- ★ coupled dynamical systems
- ★ diffusion processes $\frac{d}{dt}u = Lu$
- ★ discrete Green's functions
- \star example



Delaunay triangles



Can we compute this in a distributed fashion?

Ideas for future work

- \star dynamic topology 🛛 🖡
- * characterize convergence rates
- \star nontermination 💦 📕
- ★ computational complexity issues
- ★ distributed optimization
- \star distributed control of network flows 🛛 📕

***** • • •

References

N Lynch Distributed algorithms ISBN 1558603484 Morgan Kauffman 1996

D P Bertsekas & J N Tsitsiklis Parallel and distributed computation: Numerical Methods ISBN 1886529019 Athena Scientific 1997

G Tel Introduction to distributed algorithms ISBN 0521794838 CUP 2000

V Barbosa An introduction to distributed algorithms ISBN 0262024128 MIT Press 1996

sodium:/home/kbriggs/ada-bristol-talk/ada.tex