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Outline

F Motivation for asynchronous distributed algorithms (ADAs)

F Simulation techniques

F Some real examples

F Future work
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Models of computing

F Single CPU + RAM

F Multiple CPU + RAM

F Cluster (Beowulf, mosix)

F ZetaGrid

F Asynchronous distributed algorithms (ADAs)

F internet

F . . .

Can we unify these?
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Asynchronous distributed model

F Network of identical nodes, with message queue

F Each knows only its neighbours

F Each performs the same subalgorithm

F Each runs asynchronously wrt neighbours

F Protocol: a finite set of pre-specified messages

F Indefinite delay before reply to message

Theme: atheism
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Cooperation of nodes

Required: to perform some useful global actions:

F Reboot system

F Detect node failures

F Count total number of nodes

F Name nodes and elect leader

F Build spanning trees

F Find shortest paths

F Compute and optimize network flows
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Simulating an ADA on one processor

In decreasing order of weight:

F unix processes

F kernel threads

F threads in python, java etc.

F other tricks
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Python threads

import threading

class Node:

   def init(links):
     message_queue=[]
     # ...

   def run():
     while 1:
       # ...

   def send(target):
     # ...

   def receive(source):
     # ...

nodes=[Node([2,3]),Node([3]),Node([1])]

for node in nodes:
  Thread(node.run).start()
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Counting all nodes

F All nodes asleep except 0, who is awake and sends to all
neighbours

• if receiver awake: return `reject'

• if receiver asleep:

. wake up and relay message to neighbours

. return number of nodes from relay replies

. receiver returns sum+1 to requester
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Shortest path routing to node 0

Asynchronous Bellman-Ford algorithm:

x(i)← min
j ∈ neighbours of node i

x(j)+d(j)

where:

• x(i) is node i's current estimate of the shortest path to node 0

• d(j) is the distance to node j (one hop)

Termination?
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Building a spanning tree

Root node has weight 1

while 1:
• node sends its weight to neighbours

• if receiver is unweighted, adopt sender's weight+1

• else if receiver's weight > sender's weight+1

. receiver adopts new parent

1

2

2

2 2

23 3

3

3
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Layering

optimization, flows, . . .
counting; spanning tree

routing
reboot; failure detection

adjacency
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Graph centre - definitions

F D = d(x, y) = distance matrix of graph G

F The eccentricity of a vertex x in G and the radius ρ(G) are
defined as e(x) = maxy∈V d(x, y) and ρ(G) = minx∈V e(x)

F The centre of G is the set

C(G) = { x ∈ V | e(x) = ρ(G) }.

C(G) is the solution of the emergency facility local problem

F The status d(x) of a vertex and the status σ(G) of the graph
G are defined as d(x) =

∑
y∈V d(x, y) and σ(G) = min d(x)

F The median is the solution of the service facility location
problem. The median of G is the set

M(G) = { x ∈ V | d(x) = σ(G) }
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Graph centre - algorithm

0 True

3 True

9 True 12 True

15 True

6 False 0

3

9 12

15

0 maxminpath=3

3 maxminpath=2

9 maxminpath=3 12 maxminpath=2

15 maxminpath=3

0 remote

3 Centre

9 remote 12 Centre

15 remote

top left: connectivity; top right: connected partition

bottom left: eccentricity; bottom right: centre
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Electrical circuits: theory

F Digraph G with rk the resistance of edge k

F Problem 1: translate graph topology (known only locally) to
circuit equations

F Problem 2: solve these equations

F Apply to the circuit:

• Kirchhoff's current law (KCL)

• Kirchhoff's voltage law (KVL)

• Ohm's Law (ΩL)

F Let v be the voltage vector and i the current vector (in edge
space)
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Electrical circuits: more theory

F A is the adjacency matrix and D is the degree matrix

F Find incidence matrix B from BBT = L = D−A

F Then KCL is Bi = 0

F Build a spanning tree T

F Edges in T are branches, other edges are chords

F Each chord has a fundamental cycle (FC)

F C: matrix with one column for each edge, with elements
being the coefficients of the corresponding FC in the edge
space (only chords are really needed)

F Then KVL is CTv = 0

F ΩL is vk = ikrk
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Electrical circuits: the solution!

F i = Y v, where Y is the conductance matrix

F Y = −C C+R, R = diag (r1, r2, . . . )

F C+R is the weighted Moore-Penrose pseudo-inverse of C with
weight R. If R = W TW , then C+R = (WC)+ W T−1

F C+RCC = C and (RCC+R)T = RCC+R

F I have developed an algorithm for incremental computation of
C+R, which can be applied as the columns of C are found by
remote nodes
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Electrical circuits: example

4 nodes  4 links

1

2

e1 
1 Ohm

4

e2 
1 Ohm

3

e4 
1 Ohm

e3 
1 Ohm

A =


0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0



B =


1 0 0 0
−1 1 0 −1

0 0 −1 1
0 −1 1 0
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Electrical circuits: example continued

4 nodes  4 links

1

2

e1 
1 Ohm

4

e2 
1 Ohm

3

e4 
1 Ohm

e3 
1 Ohm

C =


0 0 0 0
0 0 1 0
0 0 1 0
0 0 1 0



Y =

[
1 0 0 0
0 −1/3 −1/3 −1/3
0 −1/3 −1/3 −1/3
0 −1/3 −1/3 −1/3

]
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Distributed linear algebra

F Example problem: compute matrix A−1, when elements Aij

are received in random order and at random times from
distant nodes

F Assume messages are updates Aij → Aij+α to an initially zero
matrix

F Require A−1 to be correct at all times

F Generically A is singular at most times, but we can use the
Moore-Penrose pseudo-inverse A†

. AA†A = A

. A†AA† = A†

. (AA†)T = AA†

. (A†A)T = A†A

F Update formulas are available which require storage only of
the current A and A†

F cf. stream computing model
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Exact real arithmetic example

a

**  b

sqr

- 

c

*   

2 4

output

/

-

sqrt

more.btexact.com/people/briggsk2/XR.html
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Dynamical processes on graphs

F coupled dynamical systems

F diffusion processes d
dt u = L u

F discrete Green's functions

F example

. Γ =
0 1 2 3 4

. G(Γ) =

[
3 2 1
2 4 2
1 2 3

]
/2
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Delaunay triangles

Can we compute this in a distributed fashion?
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Ideas for future work

F dynamic topology

F characterize convergence rates

F nontermination

F computational complexity issues

F distributed optimization

F distributed control of network flows

F . . .
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