Statistics of continued fractions

Keith Briggs
Keith.Briggs@bt.com
more.btexact.com/people/briggsk2

BT(Exact

University of York Winter Solstice Dynamics Day 2003 Dec 191400

Classical theory

* Regular continued fractions are symbolic dynamics of the Gauss map:

$$
g(x)=1 / x-\lfloor 1 / x\rfloor \quad \text { for } \quad x \in(0,1]
$$

* The partial quotient ('digit') x_{k} output at the k th iteration is $x_{k}=\lfloor 1 / x\rfloor \quad \|$
* I write $x=\left[x_{1}, x_{2}, x_{3}, \ldots\right]$, where $x_{k} \in\{1,2,3, \ldots\}$ ॥
* The continued fraction is finite iff x is rational
* The continued fraction is eventually periodic iff x is a quadratic irrational
* For almost all x, the digit i occurs with relative frequency $\mu(i) \equiv \log _{2}\left[\frac{(i+1)^{2}}{i(i+2)}\right]$

Gauss map

More theory

* I want to extend this theory to look at occurrences of finite blocks of digits $i=\left(i_{1}, i_{2}, \ldots, i_{m}\right), i_{j} \geqslant 1$
* [4, p226] gives a formula for relative frequency of the m-block i which holds as $n \rightarrow \infty$ for almost all irrationals:

$$
\operatorname{card}\left\{\kappa:\left(x_{\kappa}, \ldots, x_{\kappa+m-1}\right)=i, 1 \leqslant \kappa \leqslant n\right\} / n=
$$

$$
\log _{2}\left[\frac{1+v(i)}{1+u(i)}\right]+o\left(n^{-1 / 2} \log ^{(3+\epsilon) / 2}(n)\right)
$$

where (with $[i]=p_{m} / q_{m}$ for the m-block i)

$$
\begin{aligned}
& u(i)= \begin{cases}\left(p_{m}+p_{m-1}\right) /\left(q_{m}+q_{m-1}\right) & \text { if } m \text { is odd } \\
p_{m} / q_{m} & \text { if } m \text { is even }\end{cases} \\
& v(i)= \begin{cases}p_{m} / q_{m} & \text { if } m \text { is odd } \\
\left(p_{m}+p_{m-1}\right) /\left(q_{m}+q_{m-1}\right) & \text { if } m \text { is even }\end{cases}
\end{aligned}
$$

Numerical values for the frequencies

For 2-blocks:

	1	2	3	4	5	6
1	0.15200	0.07038	0.04064	0.02647	0.01861	0.01380
2	0.07038	0.02914	0.01594	0.01005	0.00691	0.00505
3	0.04064	0.01594	0.00851	0.00529	0.00361	0.00262
4	0.02647	0.01005	0.00529	0.00326	0.00221	0.00160
5	0.01861	0.00691	0.00361	0.00221	0.00150	0.00108
6	0.01380	0.00505	0.00262	0.00160	0.00108	0.00078

Literature survey

* Lang and Trotter [1] examined the frequency of digits amongst the first 1000 of several cubic irrationals
\star Brent et al. [2] examined the frequency of digits amongst the first 200000 of several algebraic irrationals
* Neither of the above papers find any evidence of abnormality amongst the numbers examined
* No papers look at the distribution of blocks of length greater than 1

Explicit examples of abnormal numbers

* all quadratic irrationals, e.g. $2^{1 / 2}=1+[2,2,2,2, \ldots]$
$\star \mathrm{I}_{1}(2) / \mathrm{I}_{0}(2)=[1,2,3,4, \ldots]$ (ratio of modified Bessel functions)
$\star \mathbf{I}_{1+a / d}(2 / d) / \mathrm{I}_{a / d}(2 / d)=[a+d, a+2 d, a+3 d, \ldots]$
$\star \tanh (1)=[1,3,5,7, \ldots]$
$\star \exp (1 / n)=[1, n-1,1,1,3 n-1,1,1,5 n-1, \ldots] ; n=1,2,3 \ldots$
$\star \exp (2)=7+[2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,1, \ldots]$
* $\exp (2 /(2 n+1)) ; n=1,2,3 \ldots$
$\star \sum_{k=1}^{\infty} 2^{-\lfloor k \phi\rfloor}=\left[2^{0}, 2^{1}, 2^{1}, 2^{3}, 2^{5}, 2^{8}, 2^{13}, \ldots\right] ; \phi=(\sqrt{5}-1) / 2$

Method

* I calculate a few million digits for several cubic irrationals and a few other irrationals II
* I count exactly the observed frequency of all blocks of lengths 1,2,3,4, and 5 |
* I calculate a Pearson χ^{2} test statistic which measures the deviation of the observed frequencies from the expected frequencies
\star Because the number of degrees of freedom ν is so large (typically several thousand), a normal approximation is sufficiently accurate. The transformation is $Z \equiv \sqrt{2 \chi^{2}}-\sqrt{2 \nu-1}$. Under the assumption of normality (of the cf of $x!$), Z is distributed $N(0,1)$

Pearson χ^{2} results: $2^{1 / 3}$ and $3^{1 / 3}$
cbrt2

Pearson χ^{2} results: $4^{1 / 3}$ and $5^{1 / 3}$
cbrt4

cbrt5

Pearson χ^{2} results: $2 \cos (2 \pi / 7)$ and largest root of

$$
x^{3}-8 x-10
$$

(the last example is famous for having several abnormally large digits)

Pearson χ^{2} results: $(\sqrt{5}-1) / 2+\sqrt{2}-1$ and π

Autocorrelation of digits

* We would expect the the autocorrelation function (acf) of any analytic function of the digits that has a finite mean (for example, the \log or the reciprocal) would decay like q^{k} at lag k, where $q \approx-0.303663$ is Wirsing's constant I
* This is investigated in the following graphs. I plot $\log _{10}$ of the absolute value of the acf as a function of lag. The green line has the Wirsing slope
* In Rockett \& Szüsz [3], we have the result

$$
\operatorname{Pr}\left[x_{n}=r \& x_{n+k}=s\right]=\operatorname{Pr}\left[x_{n}=r\right] \operatorname{Pr}\left[x_{n+k}=s\right]\left(1+O\left(q^{k}\right)\right)
$$

This, however, is too weak to allow explicit statistical tests

acf estimation difficulties

* For the $\operatorname{AR}(1)$ process $x(t+1)=\alpha x(t)+\epsilon,|\alpha|<1$, the exact acf at lag k is $\rho(k)=\alpha^{k}$
* But the usual acf estimator r for a sample of size n has variance

$$
\operatorname{var}\left[r_{n}(k)\right]=\frac{1}{n}\left[\frac{\left(1+\alpha^{2}\right)\left(1+\alpha^{2 k}\right)}{1-\alpha^{2}}-2 k \alpha^{2 k}\right]
$$

* More generally, for a process whose acf decays for large k in the same power-law fashion, we have approximate variance $\operatorname{var}\left[r_{n}(k)\right]=\frac{1}{n}\left[\frac{1+\alpha^{2}}{1-\alpha^{2}}\right]$ for large k.
* I expect my process to conform to this behaviour, and if it does, putting in the numbers gives an estimate of $k=6$ for the largest k for which the acf estimates are meaningful
autocorrelation of logs of digits: $2^{1 / 3}$ and $3^{1 / 3}$
cbrt 2

cbrt 3

autocorrelation of logs of digits: $4^{1 / 3}$ and $5^{1 / 3}$
cbrt4

autocorrelation of logs of digits: $2 \cos (2 \pi / 7)$ and largest root of $x^{3}-8 x-10$

References

[1] S Lang \& H Trotter Continued fractions for some algebraic numbers, J. reine ang. Math. 255, 112-134 (1972)
[2] R P Brent, A J van der Poorten \& H J J te Riele A comparative study of algorithms for computing continued fractions of algebraic numbers in: Algorithmic Number Theory (H Cohen, ed.), LNCS, vol 1122, Springer-Verlag, 1996, 35-47
[3] A M Rockett \& P Szüsz Continued Fractions, World Scientific 1992, ISBN 981-02-1052-3
[4] M losifescu \& C Kraaikamp Metrical Theory of Continued Fractions, Kluwer 2002, ISBN 1402008929 (Mathematics and Its Applications, vol 547)

