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Abstract

I study the frequency of occurence of blocks of partial quotients
in the continued fractions of certain algebraic numbers (and
π), with the aim of determining whether they conform to the
expected frequencies known to hold for almost all irrational
numbers.
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Classical theory

F Regular continued fractions are symbolic dynamics of the Gauss
map:

g(x) = 1/x−b1/xc for x ∈ (0, 1]
where the digit xk (partial quotient) output at the kth itera-
tion is b1/xc

F We write x = [x1, x2, x3, . . . ], where xk ∈ {1, 2, 3, . . . }

F The continued fraction is finite iff x is rational

F For almost all x, the digit i occurs with relative frequency
µ(i) ≡ log2

[
(i+1)2

i(i+2)

]
F The continued fraction is eventually periodic iff x is a

quadratic irrational
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Gauss map

g(x) = 1/x−b1/xc for x ∈ (0, 1]
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More theory

F I want to extend this theory to look at occurrences of finite
blocks of digits i = (i1, i2, . . . , im), ij > 1

F [8, p226] gives a formula for relative frequency of the m-block
i which holds as n →∞ for almost all irrationals:

card{κ : (xκ, . . . , xκ+m−1) = i , 1 6 κ 6 n}/n =

log2

[
1+v(i)
1+u(i)

]
+o

(
n−1/2 log(3+ε)/2(n)

)
where

u(i) =

{
pm+pm−1
qm+qm−1

if m is odd
pm

qm
if m is even

v(i) =

{
pm

qm
if m is odd

pm+pm−1
qm+qm−1

if m is even
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with [i] = pm/qm for the m-block i.

F For blocks of length 2 and 3, we have explicitly:

µ(i) = log2

[
(1+i1 i2) (2+i1+i2+i1 i2)
(1+i1+i1 i2) (1+i2+i1 i2)

]
and

µ(i) = log2

[
(1+i1+i3+i2 i3+i1 i2 i3) (1+i1+i3+i1 i2+i1 i2 i3)
(i1+i3+i1 i2 i3) (2+i1+i2+i3+i2 i3+i1 i2+i1 i2 i3)

]
F For length 4,

µ(i) = log2

[
(2+i3+i4+i1+i2 (1+i3 (1+i4)) (1+i1)+i4 (i3+i1)) (1+(i2+i4) i1+i3 i4 (1+i2 i1))

(1+i2 (1+i3 i4) (1+i1)+i4 (1+i3+i1)) (1+(1+i2+i4) i1+i3 (1+i4) (1+i2 i1))

]
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Numerical values for the frequencies

For 2-blocks:

1 2 3 4 5 6
1 0.15200 0.07038 0.04064 0.02647 0.01861 0.01380
2 0.07038 0.02914 0.01594 0.01005 0.00691 0.00505
3 0.04064 0.01594 0.00851 0.00529 0.00361 0.00262
4 0.02647 0.01005 0.00529 0.00326 0.00221 0.00160
5 0.01861 0.00691 0.00361 0.00221 0.00150 0.00108
6 0.01380 0.00505 0.00262 0.00160 0.00108 0.00078
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More theory

F Note that µ(i) is unchanged if we reverse the block i, what-
ever the length. I do not know what other symmetries exist

F If a particular x has all blocks occurring with these expected
frequencies, we call x normal

F Note that because of the rapid decay of correlations (approx-
imately (−0.3)n at lag n), there is not much point in studying
very long blocks (n > 5, say). For long blocks, the two ends
are effectively independent. This makes an empirical study
such as the present one feasible.

F Of course, we can never prove abnormality (if it exists)
merely by a statistical analysis of a finite portion of the
infinite continued fraction. However, we might hope to find
evidence of abnormality, which can then be proven by other
methods
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Literature survey

F [1] examines the first 200 digits of the real root of x3−8x−10;
in particular it explains the occurrence of several very large
digits

F [2] examines the frequency of digits amongst the first 1000 of
several cubic irrationals

F [3] examines the frequency of digits amongst the first 200000
of several algebraic irrationals

F None of the above papers find any evidence of abnormality
amongst the numbers examined

F In [7], we have the result Pr [xn = r & xn+k = s] =
Pr [xn = r] Pr [xn+k = s]

(
1+O(qk)

)
, where q ≈ −0.303663 is the

Gauss-Kuzmin-Wirsing constant. This, however, is too weak a
result to allow explicit statistical tests

F No papers look at the distribution of blocks of length greater
than 1
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Explicit examples of abnormal numbers

F all quadratic irrationals, e.g. 21/2 = 1+[2, 2, 2, 2, . . . ]

F I1(2)/ I0(2) = [1, 2, 3, 4, . . . ] (ratio of modified Bessel functions)

F I1+a/d(2/d)/ Ia/d(2/d) = [a+d, a+2d, a+3d, . . . ]

F tanh(1) = [1, 3, 5, 7, . . . ]

F exp(1/n) = [1, n−1, 1, 1, 3n−1, 1, 1, 5n−1, . . . ]; n = 1, 2, 3 . . .

F exp(2) = 7+[2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, 1, 1, 9, 42, 11, 1, 1, 12, 54, . . . ]

F exp(2/(2n+1)); n = 1, 2, 3 . . .

F
∑∞

k=1 2−bkφc = [20, 21, 21, 23, 25, 28, 213, . . . ]; φ = (
√

5−1)/2
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Other theory

F It is known that for almost all x, the mean of the dig-
its does not exist. However, the mean of the log and
mean of the reciprocal do exist and are approximately
0.98784905683381078769204 and 1.7454056624073468 respec-
tively. All my examples give results consistent with these.

F Similarly for the mean of (xj)−k, k = 2, 3, 4, . . . , 10
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Method

F I calculate a few million digits for several cubic irrationals
and a few other irrationals

F I count exactly the observed frequency of all blocks of lengths
1,2,3,4,5. I use non-overlapping blocks (thanks to Gesine
Reinert for this suggestion)

F I calculate a Pearson χ2 test statistic which measures the
deviation of the observed frequencies from the expected fre-
quencies

F Because the number of degrees of freedom ν is so large (typ-
ically several thousand), a normal approximation is sufficiently
accurate. The transformation is Z ≡

√
2χ2−

√
2ν−1. Under

the assumption of normality (of the cf of x!), Z is distributed
N(0, 1)
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F I plot this Z for blocks of length 1 (red), 2 (green), 3 (dark
blue), 4 (light blue), 5 (violet) as a function of the number
of digits computed. We are looking for large deviations (say,
> 3) away from zero as a sign of abnormality

F The rare events have to handled with care. I used this
prescription: for each event i, I calculate its expected fre-
quency. If this is less than 5, I classify this as a rare event,
and I lump together all rare events into one bin. If it is
greater than 5, I calculate the usual contribution to χ2 (i.e.
(observed−expected)2/expected). There is also a tail cor-
rection term to χ2, namely those events which were never
observed to occur

F There are probably better ways of doing this!

F I also do likelihood ratio tests, where the test statistic is
2

∑
observed log observed

expected However, this is probably not very
different, since when x (observed) is close to y (expected),
2

∑
x log(x/y) ≈

∑
(x−y)2/y
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Pearson χ2 results: 21/3 and 31/3
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Pearson χ2 results: 41/3 and 51/3

cbrt4
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Pearson χ2 results: 61/3 and 71/3
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Pearson χ2 results: 91/3 and 21/3+31/2

cbrt9

0 1 2 3 4 5
−4

−2

0

2

4

partial quotients/106

n
o

rm
a

liz
e

d
 χ2

cbrt2+sqrt3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−4

−2

0

2

4

partial quotients/106

n
o

rm
a

liz
e

d
 χ2

Keith Briggs Continued fractions of algebraic numbers 17 of 33



Pearson χ2 results: 2 cos(2π/7) and largest root of
x3−8x−10
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(the last example is famous for having several abnormally large digits)
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Pearson χ2 results: (
√

5−1)/2+
√

2−1 and π
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Likelihood ratio results: 21/3 and 31/3
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Likelihood ratio results: 41/3 and 51/3
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Likelihood ratio results: 61/3 and 71/3
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Likelihood ratio results: 91/3 and 21/3+31/2
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Likelihood ratio results: 2 cos(2π/7) and largest root of
x3−8x−10

2cos2pion7
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(the last example is famous for having several abnormally large digits)

Keith Briggs Continued fractions of algebraic numbers 24 of 33



Autocorrelation of digits

F We would expect the the autocorrelation function (acf) of any
analytic function of the digits that has a finite mean (for
example, the log or the reciprocal) would decay like qk at lag
k, where q ≈ −0.3 is Wirsing's constant

F This is investigated in the following graphs. I plot log10 of the
absolute value of the acf as a function of lag. The green line
has the Wirsing slope
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acf estimation difficulties

F For the AR(1) process x(t+1) = αx(t)+ε, |α| < 1, the exact acf
at lag k is ρ(k) = αk

F But the usual acf estimator r for a sample of size n has
variance

var [rn(k)] =
1
n

[
(1+α2)(1+α2k)

1−α2 −2kα2k
]

F More generally, for a process whose acf decays for large k
in the same power-law fashion, we have approximate variance
var [rn(k)] = 1

n

[
1+α2

1−α2

]
for large k.

F I expect my process to conform to this behaviour, and if it
does, putting in the numbers gives an estimator of k = 6 for
the largest k for which the acf estimates are meaningful
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autocorrelation of logs of digits: 21/3 and 31/3
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autocorrelation of logs of digits: 41/3 and 51/3
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autocorrelation of logs of digits: 61/3 and 71/3
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autocorrelation of logs of digits: 91/3 and 21/3+31/2
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autocorrelation of logs of digits: 2 cos(2π/7) and largest
root of x3−8x−10
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