Connectivity of random graphs

Keith Briggs Keith.Briggs@bt.com

more.btexact.com/people/briggsk2/

CABDyN seminar, Saïd Business School 2004 October 12

typeset 2004 October 14 10:20 in $\texttt{pdfIAT}_{\!E\!X}$ on a linux system

BT Research at Martlesham, Suffolk

- Cambridge-Ipswich high-tech corridor
- 2000 technologists
- 15 companies
- UCL, Univ of Essex

• set of nodes (vertices) $N = \{1, 2, 3, ...\}$

- set of nodes (vertices) $N = \{1, 2, 3, \dots\}$
- set of edges (links) $E = \{\{1, 2\}, \{1, 4\}, \{2, 5\}, \dots\}$

- set of nodes (vertices) $N = \{1, 2, 3, \dots\}$
- set of edges (links) $E = \{\{1,2\},\{1,4\},\{2,5\},\dots\}$
- (simple unlabelled undirected) graph:

Q -	<u>р-</u> с)
У	0	

- set of nodes (vertices) $N = \{1, 2, 3, \dots\}$
- set of edges (links) $E = \{\{1,2\},\{1,4\},\{2,5\},\dots\}$
- (simple unlabelled undirected) graph:

• (simple unlabelled undirected) connected graph:

- set of nodes (vertices) $N = \{1, 2, 3, \dots\}$
- set of edges (links) $E = \{\{1,2\},\{1,4\},\{2,5\},\dots\}$
- (simple unlabelled undirected) graph:

• (simple unlabelled undirected) connected graph:

• (simple undirected) labelled graph:

• let G be a graph of n nodes

- let G be a graph of n nodes
- let p = 1 q be the probability that each possible edge exists

- let G be a graph of n nodes
- let p = 1 q be the probability that each possible edge exists
- edge events are independent

- \bullet let G be a graph of n nodes
- let p = 1 q be the probability that each possible edge exists
- edge events are independent
- \bullet let P(n,p) be the probability that $G\{n,p\}$ is connected

- let G be a graph of n nodes
- let p = 1 q be the probability that each possible edge exists
- edge events are independent
- let P(n,p) be the probability that $G\{n,p\}$ is connected
- then P(1,p) = 1 and $P(n,p) = 1 \sum_{k=1}^{n-1} {n-1 \choose k-1} P(k,p) q^{k(n-k)}$ for $n = 2, 3, 4, \ldots$

- let G be a graph of n nodes
- let p = 1 q be the probability that each possible edge exists
- edge events are independent
- let P(n,p) be the probability that $G\{n,p\}$ is connected
- then P(1,p) = 1 and $P(n,p) = 1 \sum_{k=1}^{n-1} {n-1 \choose k-1} P(k,p) q^{k(n-k)}$ for $n = 2, 3, 4, \ldots$

$$P(2,p) = 1-q$$

$$P(3,p) = (2q+1)(q-1)^{2}$$

$$P(4,p) = (6q^{3}+6q^{2}+3q+1)(1-q)^{3}$$

$$P(5,p) = (24q^{6}+36q^{5}+30q^{4}+20q^{3}+10q^{2}+4q+1)(q-1)^{4}$$

- let G be a graph of n nodes
- let p = 1 q be the probability that each possible edge exists
- edge events are independent
- let P(n,p) be the probability that $G\{n,p\}$ is connected

• then
$$P(1,p) = 1$$
 and $P(n,p) = 1 - \sum_{k=1}^{n-1} {n-1 \choose k-1} P(k,p) q^{k(n-k)}$
for $n = 2, 3, 4, \ldots$

$$P(2,p) = 1-q$$

$$P(3,p) = (2q+1)(q-1)^{2}$$

$$P(4,p) = (6q^{3}+6q^{2}+3q+1)(1-q)^{3}$$

$$P(5,p) = (24q^{6}+36q^{5}+30q^{4}+20q^{3}+10q^{2}+4q+1)(q-1)^{4}$$

• as $n \to \infty$, we have $P(n,p) \to 1 - nq^{n-1}$

Connectivity for the Bernoulli model

x-axis: $\log(n = \text{number of nodes}), n = 2, ..., 100$ *y*-axis: *p*, 0 at top, 1 at bottom blue=0 red=1

More on the Bernoulli random graph model

• the probability that two *pre-specified* nodes (not randomly chosen) are connected is different. If we call this R(n,p), then we have R(1,p) = 1 and:

$$R(n,p) = 1 - \sum_{k=1}^{n-1} {n-2 \choose k-1} P(k,p) q^{k(n-k)}, \quad n = 2, 3, 4, \dots$$

Pr[1 and 2 connected] for the Bernoulli model

x-axis: $\log(n = \text{number of nodes}), n = 2, ..., 100$ *y*-axis: *p*, 0 at top, 1 at bottom blue=0 red=1

• problem: compute the numbers of connected labelled graphs with n nodes and $m = n-1, n, n+1, n+2, \ldots$ edges

- problem: compute the numbers of connected labelled graphs with n nodes and $m=n-1,n,n+1,n+2,\ldots$ edges
- with this information, compute the probability of a randomly chosen labelled graph being connected

- problem: compute the numbers of connected labelled graphs with n nodes and $m=n-1,n,n+1,n+2,\ldots$ edges
- with this information, compute the probability of a randomly chosen labelled graph being connected
- compute large-n asymptotics for these quantities, for fixed excess $k\equiv m\!-\!n$

- problem: compute the numbers of connected labelled graphs with n nodes and $m=n-1,n,n+1,n+2,\ldots$ edges
- with this information, compute the probability of a randomly chosen labelled graph being connected
- compute large-n asymptotics for these quantities, for fixed excess $k\equiv m\!-\!n$
- I have computed the accurate asymptotics and have checked the results against exact numerical data
 - a sketch of the ideas involved follows; full details are available on request

The idea of generating functions

• generating function (gf):

$$\{a_1, a_2, a_3, \dots\} \leftrightarrow \sum_{k=1}^{\infty} a_k x^k$$

The idea of generating functions

• generating function (gf):

$$\{a_1, a_2, a_3, \dots\} \leftrightarrow \sum_{k=1}^{\infty} a_k x^k$$

• exponential generating function (egf):

$$\{a_1, a_2, a_3, \dots\} \leftrightarrow \sum_{k=1}^{\infty} \frac{a_k}{k!} x^k$$

Some known exponential generating functions

• exponential generating function enumerating labelled graphs $([z^n]:$ number with n nodes; $[w^m]:$ number with m edges):

$$g(w,z) = \sum_{k=0}^{\infty} (1\!+\!w)^{\binom{k}{2}} z^k / k!$$

Some known exponential generating functions

• exponential generating function enumerating labelled graphs $([z^n]:$ number with n nodes; $[w^m]:$ number with m edges):

$$g(w,z) = \sum_{k=0}^{\infty} (1+w)^{\binom{k}{2}} z^k / k!$$

 exponential generating function enumerating connected labelled graphs:

$$c(w,z) = \log(g(w,z))$$

= $z + w \frac{z^2}{2} + (3w^2 + w^3) \frac{z^3}{6} + (16w^3 + 15w^4 + 6w^5 + w^6) \frac{z^4}{4!} + \dots$

rooted labelled trees

$$T(z) = z \exp(T(z)) = \sum_{n \ge 1} n^{n-1} \frac{z^n}{n!} = z + \frac{2}{2!} z^2 + \frac{9}{3!} z^3 + \cdots$$

rooted labelled trees

$$T(z) = z \exp(T(z)) = \sum_{n \ge 1} n^{n-1} \frac{z^n}{n!} = z + \frac{2}{2!} z^2 + \frac{9}{3!} z^3 + \cdots$$

• unrooted labelled trees

$$W_{-1}(z) = T(z) - T(z)^2 / 2 = z + \frac{1}{2!}z^2 + \frac{3}{3!}z^3 + \frac{16}{4!}z^4 + \dots$$

rooted labelled trees

$$T(z) = z \exp(T(z)) = \sum_{n \ge 1} n^{n-1} \frac{z^n}{n!} = z + \frac{2}{2!} z^2 + \frac{9}{3!} z^3 + \cdots$$

unrooted labelled trees

$$W_{-1}(z) = T(z) - T(z)^2 / 2 = z + \frac{1}{2!}z^2 + \frac{3}{3!}z^3 + \frac{16}{4!}z^4 + \dots$$

• unicyclic labelled graphs

$$W_0(z) = \frac{1}{2} \log \left[\frac{1}{1 - T(z)} \right] - \frac{1}{2} T(z) - \frac{1}{4} T(z)^2 = \frac{1}{3!} z^3 + \frac{15}{4!} z^4 + \frac{222}{5!} z^5 + \frac{3660}{6!} z^6 + \frac{1}{4!} z^4 + \frac{15}{5!} z^5 + \frac{15}{6!} z^6 + \frac{1}{5!} z^6$$

rooted labelled trees

$$T(z) = z \exp(T(z)) = \sum_{n \ge 1} n^{n-1} \frac{z^n}{n!} = z + \frac{2}{2!} z^2 + \frac{9}{3!} z^3 + \cdots$$

unrooted labelled trees

$$W_{-1}(z) = T(z) - T(z)^2 / 2 = z + \frac{1}{2!} z^2 + \frac{3}{3!} z^3 + \frac{16}{4!} z^4 + \dots$$

• unicyclic labelled graphs

$$W_0(z) = \frac{1}{2} \log \left[\frac{1}{1 - T(z)} \right] - \frac{1}{2} T(z) - \frac{1}{4} T(z)^2 = \frac{1}{3!} z^3 + \frac{15}{4!} z^4 + \frac{222}{5!} z^5 + \frac{3660}{6!} z^6 + .$$

• bicyclic labelled graphs

$$W_1(z) = \frac{T(z)^4 (6 - T(z))}{24 (1 - T(z))^3} = \frac{6}{4!} z^4 + \frac{205}{5!} z^5 + \frac{5700}{6!} z^6 + \dots$$

• Stirling:

$$\Gamma(n) \sim \left(\frac{2\pi}{n}\right)^{1/2} \left(\frac{n}{e}\right)^n \left[1 + \frac{1}{12}n^{-1} + \frac{1}{288}n^{-2} - \frac{139}{51840}n^{-3} + \dots\right]$$

• Stirling:

$$\Gamma(n) \sim \left(\frac{2\pi}{n}\right)^{1/2} \left(\frac{n}{e}\right)^n \left[1 + \frac{1}{12}n^{-1} + \frac{1}{288}n^{-2} - \frac{139}{51840}n^{-3} + \dots\right]$$

• Taylor series:

 $1/\Gamma(n) = n + 0.57721566 \dots n - 0.65587807 \dots n^2 + \dots$

• Stirling:

$$\Gamma(n) \sim \left(\frac{2\pi}{n}\right)^{1/2} \left(\frac{n}{e}\right)^n \left[1 + \frac{1}{12}n^{-1} + \frac{1}{288}n^{-2} - \frac{139}{51840}n^{-3} + \dots\right]$$

• Taylor series:

 $1/\Gamma(n) = n + 0.57721566 \dots n - 0.65587807 \dots n^2 + \dots$

- e.g. for $n=4,\ \Gamma(4)=6$: 3 terms of asymptotic expansion give an absolute error $<10^{-6}$

• Stirling:

$$\Gamma(n) \sim \left(\frac{2\pi}{n}\right)^{1/2} \left(\frac{n}{e}\right)^n \left[1 + \frac{1}{12}n^{-1} + \frac{1}{288}n^{-2} - \frac{139}{51840}n^{-3} + \dots\right]$$

• Taylor series:

 $1/\Gamma(n) = n + 0.57721566 \dots n - 0.65587807 \dots n^2 + \dots$

- e.g. for $n=4,\ \Gamma(4)=6$: 3 terms of asymptotic expansion give an absolute error $<10^{-6}$
- cf. the Taylor series 3 terms give an absolute error >5

• Stirling:

$$\Gamma(n) \sim \left(\frac{2\pi}{n}\right)^{1/2} \left(\frac{n}{e}\right)^n \left[1 + \frac{1}{12}n^{-1} + \frac{1}{288}n^{-2} - \frac{139}{51840}n^{-3} + \dots\right]$$

• Taylor series:

 $1/\Gamma(n) = n + 0.57721566 \dots n - 0.65587807 \dots n^2 + \dots$

- e.g. for $n=4,\ \Gamma(4)=6$: 3 terms of asymptotic expansion give an absolute error $<10^{-6}$
- cf. the Taylor series 3 terms give an absolute error >5
- asymptotic expansion diverges for all n!

Asymptotic expansion of P(n, n+k)

k	type		$\left \begin{array}{c} [n^0] \end{array} \right $	$[n^{-1/2}]$	$[n^{-1}]$	$[n^{-3/2}]$
-1	tree	$\frac{P(n,n-1)}{2^n e^{2-n} n^{-1/2} \xi}$	$\frac{1}{2}$	0	$-\frac{7}{8}$	0
0	unicycle	$\tfrac{P(n,n+0)}{2^n e^{2-n}\xi}$	$\frac{1}{4}\xi$	$-\frac{7}{6}$	$rac{1}{3}\xi$	$-\frac{1051}{1080}$
1	bicycle	$\frac{P(n,n+1)}{2^{n}e^{2-n}n^{1/2}\xi}$	$\frac{5}{12}$	$-rac{7}{12}\xi$	$\frac{515}{144}$	$-rac{28}{9}\xi$

 $\xi \equiv \sqrt{2\pi}$

Unlabelled graphs

- much less is known about the unlabelled case
- the difficulties arise in distinguishing isomorphic graphs

Asymptotics for unlabelled unicycles

- I get that the number c(n,n) of connected unlabelled unicyclic graphs behaves like

$$\left(\frac{c(n,n)}{d^n} - \frac{1}{4^n}\right) n^{3/2} \sim$$

 $-0.4466410059 + 0.44311055235n^{-1} + 0.91158865326n^{-2} + O(n^{-3})$

Consider connectivity of nodes with a radio range ρ placed uniformly and randomly in a bounded region under various models:

• Poisson 1d model: the nodes exist on all of \mathbb{R} with a exponential distribution of separation with parameter λ , and a window of unit length is placed over them. The number of nodes visible through the window is Poisson distributed

- Poisson 1d model: the nodes exist on all of \mathbb{R} with a exponential distribution of separation with parameter λ , and a window of unit length is placed over them. The number of nodes visible through the window is Poisson distributed
- fixed-n 1d model: there are exactly n nodes independently and uniformly placed in [0, 1]

- Poisson 1d model: the nodes exist on all of \mathbb{R} with a exponential distribution of separation with parameter λ , and a window of unit length is placed over them. The number of nodes visible through the window is Poisson distributed
- fixed-n 1d model: there are exactly n nodes independently and uniformly placed in [0, 1]
- Poisson 2d model: the nodes exist on all of \mathbb{R}^2 with a intensity λ , and a finite-area window is placed over them

- Poisson 1d model: the nodes exist on all of \mathbb{R} with a exponential distribution of separation with parameter λ , and a window of unit length is placed over them. The number of nodes visible through the window is Poisson distributed
- fixed-n 1d model: there are exactly n nodes independently and uniformly placed in [0, 1]
- Poisson 2d model: the nodes exist on all of \mathbb{R}^2 with a intensity λ , and a finite-area window is placed over them The number of nodes visible through the window is Poisson distributed
- fixed-n 2d model: there are exactly n nodes independently and uniformly placed in a bounded region R

Consider connectivity of nodes with a radio range ρ placed uniformly and randomly in a bounded region under various models:

- Poisson 1d model: the nodes exist on all of \mathbb{R} with a exponential distribution of separation with parameter λ , and a window of unit length is placed over them. The number of nodes visible through the window is Poisson distributed
- fixed-n 1d model: there are exactly n nodes independently and uniformly placed in [0, 1]
- Poisson 2d model: the nodes exist on all of \mathbb{R}^2 with a intensity λ , and a finite-area window is placed over them The number of nodes visible through the window is Poisson distributed
- fixed-n 2d model: there are exactly n nodes independently and uniformly placed in a bounded region R

Notation:

- pdf=probability density function
- cdf=cumulative distribution function
- \triangleright the notation is sloppy in not distinguishing a RV X and its values x
- \triangleright [[x]] is the indicator function: 1 if x is true, else 0

• λ is the intensity of nodes per unit length

- λ is the intensity of nodes per unit length
- the pdf of the internode distance d is $f(d) = \lambda e^{-\lambda d}$

- λ is the intensity of nodes per unit length
- \bullet the pdf of the internode distance d is $f(d) = \lambda e^{-\lambda d}$
- the cdf of the internode distance is $F(d) = 1 e^{-\lambda d}$

- λ is the intensity of nodes per unit length
- the pdf of the internode distance d is $f(d) = \lambda e^{-\lambda d}$
- the cdf of the internode distance is $F(d) = 1 e^{-\lambda d}$
- the expectation of d is $\mathbb{E}[d]=1/\lambda$

- λ is the intensity of nodes per unit length
- the pdf of the internode distance d is $f(d) = \lambda e^{-\lambda d}$
- the cdf of the internode distance is $F(d) = 1 e^{-\lambda d}$
- the expectation of d is $\mathbb{E}[d]=1/\lambda$
- \bullet we now place a unit length window over $\mathbb R$ and assume that n nodes are visible

- λ is the intensity of nodes per unit length
- the pdf of the internode distance d is $f(d) = \lambda e^{-\lambda d}$
- the cdf of the internode distance is $F(d) = 1 e^{-\lambda d}$
- the expectation of d is $\mathbb{E}[d]=1/\lambda$
- we now place a unit length window over $\mathbb R$ and assume that n nodes are visible
 - there are n-1 internode intervals, and the cdf of the maximum interval is $F_{n-1}(d)=(1-e^{-\lambda d})^{n-1}$

- λ is the intensity of nodes per unit length
- the pdf of the internode distance d is $f(d) = \lambda e^{-\lambda d}$
- the cdf of the internode distance is $F(d) = 1 e^{-\lambda d}$
- the expectation of d is $\mathbb{E}[d]=1/\lambda$
- we now place a unit length window over $\mathbb R$ and assume that n nodes are visible
 - there are n-1 internode intervals, and the cdf of the maximum interval is $F_{n-1}(d)=(1-e^{-\lambda d})^{n-1}$
 - the cdf of the minimum interval is $F_1(d) = 1 e^{-n\lambda d}$

- λ is the intensity of nodes per unit length
- the pdf of the internode distance d is $f(d) = \lambda e^{-\lambda d}$
- the cdf of the internode distance is $F(d) = 1 e^{-\lambda d}$
- the expectation of d is $\mathbb{E}[d]=1/\lambda$
- we now place a unit length window over $\mathbb R$ and assume that n nodes are visible
 - there are n-1 internode intervals, and the cdf of the maximum interval is $F_{n-1}(d)=(1-e^{-\lambda d})^{n-1}$
 - the cdf of the minimum interval is $F_1(d) = 1 e^{-n\lambda d}$
 - the pdf of the minimum interval is $f_1(d) = n\lambda e^{-n\lambda d}$

- λ is the intensity of nodes per unit length
- the pdf of the internode distance d is $f(d) = \lambda e^{-\lambda d}$
- the cdf of the internode distance is $F(d) = 1 e^{-\lambda d}$
- the expectation of d is $\mathbb{E}[d]=1/\lambda$
- we now place a unit length window over $\mathbb R$ and assume that n nodes are visible
 - there are n-1 internode intervals, and the cdf of the maximum interval is $F_{n-1}(d)=(1-e^{-\lambda d})^{n-1}$
 - the cdf of the minimum interval is $F_1(d) = 1 e^{-n\lambda d}$
 - the pdf of the minimum interval is $f_1(d) = n\lambda e^{-n\lambda d}$
 - the expectation of the minimum interval is $\mathbb{E}[d_{(1)}] = 1/(2\lambda)$, so is half the expectation of the internode distance

- λ is the intensity of nodes per unit length
- the pdf of the internode distance d is $f(d) = \lambda e^{-\lambda d}$
- the cdf of the internode distance is $F(d) = 1 e^{-\lambda d}$
- the expectation of d is $\mathbb{E}[d]=1/\lambda$
- we now place a unit length window over $\mathbb R$ and assume that n nodes are visible
 - there are n-1 internode intervals, and the cdf of the maximum interval is $F_{n-1}(d)=(1-e^{-\lambda d})^{n-1}$
 - the cdf of the minimum interval is $F_1(d) = 1 e^{-n\lambda d}$
 - the pdf of the minimum interval is $f_1(d) = n\lambda e^{-n\lambda d}$
 - the expectation of the minimum interval is $\mathbb{E}[d_{(1)}]=1/(2\lambda),$ so is half the expectation of the internode distance
 - the probability of full connectivity for the *n* nodes is thus approximately (i.e. ignoring correlation and edge effects) $F_{n-1}(\rho) = (1 e^{-\lambda \rho})^{n-1}$

• their joint pdf is (for $1\leqslant m\leqslant n$ and $\sum_{i=1}^m y_i\leqslant 1$)

$$f(y_1, y_2, \dots, y_m) = \frac{n!}{(n-m)!} \left(1 - \sum_{i=1}^m y_i \right)^{n-m}$$

• if c_i are constants such that $\sum_{i=1}^m c_i \leqslant 1$, then by integrating the pdf we obtain

$$\Pr\left[y_1 > c_1, y_2 > c_2, \dots\right] = \left(1 - \sum_{i=1}^m c_i\right)^{n-1}$$

• Boole's law for the probability of at least one event A_i of n events A_1, A_2, \ldots, A_n occurring is

$$\Pr\left[\bigcup_{i=1}^{n} A_{i}\right] = \sum_{i} \Pr\left[A_{i}\right] - \sum_{i < j} \sum_{i < j} \Pr\left[A_{i}A_{j}\right] + \dots + (-1)^{n-1} \Pr\left[A_{1}A_{2}\dots A_{n}\right]$$

Keith Briggs

• we don't care about y_1 , so we put $c_1 = 0$

- we don't care about y_1 , so we put $c_1 = 0$
- using Boole's law, the probability that the largest y_k exceeds some constant ρ is

$$\Pr\left[y_{(n)} > \rho\right] = (n-1)\Pr\left[y_1 > \rho\right] - \binom{n-1}{2}\Pr\left[y_1 > c_1, y_2 > c_2\right] + \dots$$

- we don't care about y_1 , so we put $c_1 = 0$
- using Boole's law, the probability that the largest y_k exceeds some constant ρ is

$$\Pr\left[y_{(n)} > \rho\right] = (n-1)\Pr\left[y_1 > \rho\right] - \binom{n-1}{2}\Pr\left[y_1 > c_1, y_2 > c_2\right] + \dots$$

thus

$$\Pr\left[\text{connected}\right] = 1 - \sum_{i=1}^{\lfloor 1/\rho \rfloor} (-1)^{i+1} \binom{n\!-\!1}{i} (1\!-\!i\rho)^n$$

- we don't care about y_1 , so we put $c_1 = 0$
- using Boole's law, the probability that the largest y_k exceeds some constant ρ is

$$\Pr\left[y_{(n)} > \rho\right] = (n-1)\Pr\left[y_1 > \rho\right] - \binom{n-1}{2}\Pr\left[y_1 > c_1, y_2 > c_2\right] + \dots$$

thus

$$\Pr\left[\text{connected}\right] = 1 - \sum_{i=1}^{\lfloor 1/\rho \rfloor} (-1)^{i+1} \binom{n\!-\!1}{i} (1\!-\!i\rho)^n$$

• note that for $\rho > 1/2$, this is exactly $1 - (n-1)(1-\rho)^n$

Probability of connectivity for the fixed-n 1d model

- λ is the intensity of nodes per unit area

- λ is the intensity of nodes per unit area
- the pdf of the nearest neighbour distance d is $f(d) = 2\pi\lambda de^{-\lambda\pi d^2}$

- λ is the intensity of nodes per unit area
- the pdf of the nearest neighbour distance d is $f(d) = 2\pi\lambda de^{-\lambda\pi d^2}$
- the cdf of d is $F(d) = 1 e^{-\pi \lambda d^2}$

- λ is the intensity of nodes per unit area
- the pdf of the nearest neighbour distance d is $f(d) = 2\pi\lambda de^{-\lambda\pi d^2}$
- the cdf of d is $F(d) = 1 e^{-\pi \lambda d^2}$
- the expectation of d is $\mathbb{E}[d]=1/(2\lambda^{1/2})$

- λ is the intensity of nodes per unit area
- the pdf of the nearest neighbour distance d is $f(d) = 2\pi\lambda de^{-\lambda\pi d^2}$
- the cdf of d is $F(d) = 1 e^{-\pi \lambda d^2}$
- the expectation of d is $\mathbb{E}[d]=1/(2\lambda^{1/2})$
- the variance of d is $(4\!-\!\pi)/(4\pi\lambda)$

- λ is the intensity of nodes per unit area
- the pdf of the nearest neighbour distance d is $f(d) = 2\pi\lambda de^{-\lambda\pi d^2}$
- the cdf of d is $F(d) = 1 e^{-\pi \lambda d^2}$
- the expectation of d is $\mathbb{E}[d]=1/(2\lambda^{1/2})$
- the variance of d is $(4\!-\!\pi)/(4\pi\lambda)$
- the probability of a node being isolated (i.e. having no neighbour within range ρ) is $e^{-\pi\lambda\rho^2}$

we now place a window R of area A over \mathbb{R}^2

• the number of nodes visible will be Poisson distributed with mean λA

- the number of nodes visible will be Poisson distributed with mean λA
- Conditional on n nodes being visible, and if the nearest neighbour distances were independent (which is *not* the case) the probability of no node being isolated would be $\left(1-e^{-\pi\lambda\rho^2}\right)^n$

- the number of nodes visible will be Poisson distributed with mean λA
- Conditional on n nodes being visible, and if the nearest neighbour distances were independent (which is *not* the case) the probability of no node being isolated would be $\left(1-e^{-\pi\lambda\rho^2}\right)^n$
- there is no simple way to compute the probability of full connectivity. However, since a necessary condition is that no node is isolated, the last expression is an approximate upper bound for the fixed-*n* model and is plotted in red on the following graph

- the number of nodes visible will be Poisson distributed with mean λA
- Conditional on n nodes being visible, and if the nearest neighbour distances were independent (which is *not* the case) the probability of no node being isolated would be $\left(1-e^{-\pi\lambda\rho^2}\right)^n$
- there is no simple way to compute the probability of full connectivity. However, since a necessary condition is that no node is isolated, the last expression is an approximate upper bound for the fixed-n model and is plotted in red on the following graph
- the blue curve is the asymptotic probability of the whole region R being covered

The phase transition

- the critical radius is $O((\log(n)/(\pi n))^{1/2})$
- for n=100, we estimate $\rho=0.121;$ for $n=500,\ \rho=0.0629$

Connectivity of random graphs 23 of 25

Simulation results - torus, $\rho = 0.1, 0.3$

References

[gil59] E N Gilbert: Random graphs Ann. Math. Statist., 30, 1141-1144 (1959)

[pyk65] R Pyke, Spacings, J. Roy. Stat. Soc. B27, 395-449 (1965)

[jklp93] S Janson, D E Knuth, T Łuczak & B G Pittel: The birth of the giant component Random Structures and Algorithms, 4, 233-358 (1993) www-cs-faculty.stanford.edu/~knuth/papers/bgc.tex.gz

[fss04] Ph Flajolet, B Salvy and G Schaeffer: Airy Phenomena and Analytic Combinatorics of Connected Graphs www.combinatorics.org/Volume_11/Abstracts/v11i1r34.html