Connectivity of nodes

Keith Briggs

Keith.Briggs@bt.com
research.btexact.com/teralab/keithbriggs.html

TeraTalk 2003 May 151415

TYPESET IN PDFLATEX ${ }_{E}$ ON A LINUX System

Contents

\triangleright Introduction
\triangleright Theory for the Poisson 1d model

- Order statistics theory
\triangleright Probability of connectivity for the fixed-n 1d model
\triangleright Simulation results - fixed-n 1d model
- Theory for the Poisson 2d model
\triangleright Simulation results - fixed-n 2d model Unit square Unit torus Unit-radius disk
- Distance distribution for some regions
\triangleright Triangles
- Asymptotics for near neighbours
- Exact theory for mean distances on a torus
\triangleright Almost sure connectivity results
\triangleright References

Introduction

I consider connectivity of nodes with a radio range ρ placed uniformly and randomly in a bounded region under various models:

- Poisson 1d model: the nodes exist on all of \mathbb{R} with a exponential distribution of separation with parameter λ, and a window of unit length is placed over them. The number of nodes visible through the window is Poisson distributed.
- fixed-n 1d model: there are exactly n nodes independently and uniformly placed in $[0,1]$.
- Poisson 2d model: the nodes exist on all of \mathbb{R}^{2} with a intensity λ, and a finite-area window is placed over them. The number of nodes visible through the window is Poisson distributed.
- fixed-n 2d model: there are exactly n nodes independently and uniformly placed in a bounded region R.

Notation:

$\triangleright p d f=$ probability density function
$\triangleright c d f=c u m u l a t i v e ~ d i s t r i b u t i o n ~ f u n c t i o n ~$
\triangleright The notation is sloppy in not distinguishing a RV X and its values x
$\triangleright[[x]]$ is the indicator function: 1 if x is true, else 0

Theory for the Poisson $1 d$ model

- λ is the intensity of nodes per unit length
- The pdf of the internode distance d is $f(d)=\lambda e^{-\lambda d}$
- The cdf of the internode distance is $F(d)=1-e^{-\lambda d}$
- The expectation of d is $\mathbb{E}[d]=1 / \lambda$

More theory for the Poisson 1d model

We now place a unit length window over \mathbb{R} and assume that n nodes are visible. The following results are conditional on n

- There are $n-1$ internode intervals, and the cdf of the maximum interval is $F_{n-1}(d)=\left(1-e^{-\lambda d}\right)^{n-1}$
- the cdf of the minimum interval is $F_{1}(d)=1-e^{-n \lambda d}$
- the pdf of the minimum interval is $f_{1}(d)=n \lambda e^{-n \lambda d}$
- The expectation of the minimum interval is $\mathbb{E}\left[d_{(1)}\right]=1 /(2 \lambda)$, so is half the expectation of the internode distance
- The intervals have correlation $-1 / n$
- The probability of full connectivity for the n nodes is thus approximately (i.e. ignoring correlation and edge effects) $F_{n-1}(\rho)=\left(1-e^{-\lambda \rho}\right)^{n-1}$
- This result is only approximate. We should expect deviations small n

The exact theory for the fixed- n case is here

Order statistics theory [dav70]

Let $x_{1}, x_{2}, \ldots, x_{n}$ be RVs uniformly distributed in $[0,1]$.
Sort them in increasing order as $x_{(1)} \leqslant x_{(2)} \leqslant \ldots \leqslant x_{(n)}$.

- The pdf of $x_{(k)}$ is

$$
\frac{1}{(k-1)!}\binom{n}{k} x^{k-1}(1-x)^{n-k}
$$

- The cdf of the range $r=x_{(n)}-x_{(1)}$ is $n r^{n-1}-(n-1) r^{n}$
- If $w_{r s}=x_{(s)}-x_{(r)}$, then the pdf of $w_{r s}$ is

$$
w_{r s}^{s-r-1}\left(1-w_{r s}\right)^{n-s+r} / \mathrm{B}(s-r, n-s+r+1)
$$

- For the special case of adjacent nodes $(s=r+1)$, this becomes $n\left(1-w_{r, r+1}\right)^{n-1}$, which gives a cdf of $1-\left(1-w_{r, r+1}\right)^{n}$
- However, the $w_{r, r+1}$ are not independent random variables, so the probability that the maximum of $n-1$ samples of $w_{r, r+1}$ is less than a constant ρ, is NOT $\left[1-(1-\rho)^{n}\right]^{n-1}$
\triangleright But this is approximately correct for large n and ρ near 1 and is plotted in blue on the graphs of simulation results
\triangleright As $\rho \rightarrow 1$, this becomes $1-(n-1)(1-\rho)^{n}$. cf. the exact equation

Exact theory for the fixed-n 1d model

- Let $y_{k}=x_{(k)}-x_{(k-1)}$ be the gaps $(k=2, \ldots, n)$, with $y_{1}=x_{(1)}$

- Their joint pdf is (for $1 \leqslant m \leqslant n$ and $\sum_{i=1}^{m} y_{i} \leqslant 1$)

$$
f\left(y_{1}, y_{2}, \ldots, y_{m}\right)=\frac{n!}{(n-m)!}\left(1-\sum_{i=1}^{m} y_{i}\right)^{n-m}
$$

- If c_{i} are constants such that $\sum_{i=1}^{m} c_{i} \leqslant 1$, then by integrating the pdf we obtain

$$
\operatorname{Pr}\left[y_{1}>c_{1}, y_{2}>c_{2}, \ldots\right]=\left(1-\sum_{i=1}^{m} c_{i}\right)^{n-1}
$$

- Boole's law for the probability of at least one event A_{i} of n events $A_{1}, A_{2}, \ldots, A_{n}$ occurring is

$$
\operatorname{Pr}\left[\bigcup_{i=1}^{n} A_{i}\right]=\sum_{i} \operatorname{Pr}\left[A_{i}\right]-\sum_{i<j} \operatorname{Pr}\left[A_{i} A_{j}\right]+\cdots+(-1)^{n-1} \operatorname{Pr}\left[A_{1} A_{2} \ldots A_{n}\right]
$$

Exact theory for the fixed- n 1d model (cotd.)

- We don't care about y_{1}, so we put $c_{1}=0$
- Using Boole's law, the probability that the largest y_{k} exceeds some constant ρ is

$$
\operatorname{Pr}\left[y_{(n)}>\rho\right]=(n-1) \operatorname{Pr}\left[y_{1}>\rho\right]-\binom{n-1}{2} \operatorname{Pr}\left[y_{1}>c_{1}, y_{2}>c_{2}\right]+\ldots
$$

- Thus

$$
\operatorname{Pr}[\text { fully connected }]=1-\sum_{i=1}^{\lfloor 1 / \rho\rfloor}(-1)^{i+1}\binom{n-1}{i}(1-i \rho)^{n}
$$

- This is plotted as a red line on the following pages
- Note that for $\rho>1 / 2$, this is exactly $1-(n-1)(1-\rho)^{n}$.
\triangleright cf. an approximation

Probability of connectivity for the fixed-n 1 d model

Theory for the Poisson 2d model [cre91]

- λ is the intensity of nodes per unit area
- The pdf of the nearest neighbour distance d is $f(d)=2 \pi \lambda d e^{-\lambda \pi d^{2}}$
- The cdf of d is $F(d)=1-e^{-\pi \lambda d^{2}}$
- The expectation of d is $\mathbb{E}[d]=1 /\left(2 \lambda^{1 / 2}\right)$
- The variance of d is $(4-\pi) /(4 \pi \lambda)$
- The probability of a node being isolated (i.e. having no neighbour within range ρ) is $e^{-\pi \lambda \rho^{2}}$

Theory for the Poisson 2d model

We now place a window R of area A over \mathbb{R}^{2}

- The number of nodes visible will be Poisson distributed with mean λA
- Conditional on n nodes being visible, and if the nearest neighbour distances were independent (which is not the case) the probability of no node being isolated would be $\left(1-e^{-\pi \lambda \rho^{2}}\right)^{n}$
- There is no simple way to compute the probability of full connectivity. However, since a necessary condition is that no node is isolated, the last expression is an approximate upper bound for the fixed- n model and is plotted in red on the following graphs
- The blue curve is the asymptotic probability of the whole region R being covered, using this theory

Simulation results - square, $\rho=0.1,0.3$

Simulation results - torus, $\rho=0.1,0.3$

Simulation results - unit-radius disk, $\rho=0.1,0.3$

$$
\left[1-e^{-\pi \lambda \rho^{2}}\right]^{n} \text { simulation asymptotic }
$$

Non-homogeneous Poisson process

Example: intensity falls off exponentially from an access point

Delaunay triangles 1 [kla90]

- Pick one node O from a planar Poisson process of intensity λ
- Consider triangles formed by two other nodes
- Call it empty if no other nodes are in the triangle
- Call it very empty if no other nodes are in the circumcircle of the triangle
- An empty triangle:

Delaunay triangles 2

The Delaunay triangulation consists of very empty triangles only. The second figure shows the Voronoi tesselation superimposed.

Delaunay triangles 3

- Let a and b be the lengths of the two edges adjacent to O and θ the angle
- For very empty triangles, the joint pdf is

$$
2 \pi a b \lambda^{4} \exp \left[-\pi \lambda^{2} \frac{a^{2}+b^{2}-2 a b \cos \theta}{4 \sin ^{2} \theta}\right]
$$

- For very empty triangles, the pdf of the area A is $\lambda^{2} A \exp (-\lambda A)$
- For very empty triangles, the mean of a is $\frac{32}{9 \pi \lambda}$
- For empty triangles, the pdf is $2 \pi a b \lambda^{4} \exp \left[-\lambda^{2} a b \sin (\theta) / 2\right]$
- In both cases, the mean number of triangles at O is 6

Delaunay triangles 4

Integrating out over side b and angle θ, we get for the pdf of side a :
$4 a \lambda \int_{0}^{\pi} \sin ^{2} \theta \exp \left[\frac{-\pi a^{2} \lambda}{4 \sin ^{2} \theta}\right]\left[1+e^{\alpha^{2} \nu^{2}} \alpha|\nu| \pi^{1 / 2}(\operatorname{erf}(\alpha|\nu|)+\operatorname{sign}(\nu))\right] d \theta$
where

$$
\begin{aligned}
\alpha & =\frac{\sin \theta}{(\pi \lambda)^{1 / 2}} \\
\nu & =\frac{a \lambda \cos \theta}{2 \sin ^{2} \theta}
\end{aligned}
$$

Delaunay triangles 5

1000 nodes: exact simulation

Distance distribution for some regions

Two points independently uniformly distributed in a region R; the pdf of the distance d is $f(d)$, mean distance is μ :

- $R=$ unit interval, $f(d)=2(1-d)[[0 \leqslant d \leqslant 1]], \mu=1 / 3$
- $R=1$-torus, $f(d)=2[[0 \leqslant d \leqslant 1 / 2]], \mu=1 / 4$
- $R=2$-torus

$$
\begin{aligned}
f(d) & =\left\{\begin{array}{lll}
2 \pi d & \text { if } & 0 \leqslant d<1 / 2 \\
2 d\left[\pi-4 \sec ^{-1}(2 d)\right] & \text { if } & 1 / 2 \leqslant d \leqslant \sqrt{2}
\end{array}\right. \\
\mu & =[\sqrt{2}+\log (1+\sqrt{2})] / 6
\end{aligned}
$$

- $R=$ unit radius disk, $f(d)=d / \pi\left[4 \arctan \left(\sqrt{4-d^{2}} / d\right)-d \sqrt{4-d^{2}}\right][[0 \leqslant d \leqslant 2]]$, $\mu=128 /(45 \pi)$
- $R=$ unit sphere, $\mu=36 / 35$
- $R=$ unit square, see next slide

Asymptotics for near neighbours

- Put n points in a unit torus in \mathbb{R}^{2}
- Let $d_{k}=$ be the distance to k th nearest neighbour
- Then it is known that $([\mathrm{eva02}]): \mathbb{E}\left[d_{k}\right]=\pi^{-1 / 2} \frac{\Gamma(k+1 / 2)}{\Gamma(k)} n^{-1 / 2}+$ $\mathcal{O}\left(n^{-3 / 2}\right)$
- So $\mathbb{E}\left[d_{1}\right]=1 / 2 n^{-1 / 2}+\mathcal{O}\left(n^{-3 / 2}\right)$

Asymptotics for nearest neighbours - simulations

asymptotic, $*$ is exact value for $n=2, k=1$, namely $\left[2^{1 / 2}+\log \left(1+2^{1 / 2}\right)\right] / 6$

Exact theory for mean distances on a torus 1

Recall that our pdf and cdf are defined piecewise: I will use $<$ and $>$ to indicate the pieces on $[0,1 / 2]$ and $[1 / 2,1 / \sqrt{2}]$ respectively:

$$
\begin{aligned}
f^{<}(x) & =2 \pi x \\
f^{>}(x) & =2 x\left[\pi-4 \sec ^{-1}(2 x)\right] \\
F^{<}(x) & =\pi x^{2} \\
F^{>}(x) & =\sqrt{4 x^{2}-1}+x^{2}\left[\pi-4 \sec ^{-1}(2 x)\right]
\end{aligned}
$$

Exact theory for mean distances on a torus 2

I will use the subscript $k: n$ to denote the k th order statistic in a sample of size n

Thus

$$
f_{k: n}^{<}(x)=\frac{\Gamma(n+1)}{\Gamma(k) \Gamma(n-k+1)} f^{<}(x)\left[F^{<}(x)\right]^{k-1}\left[1-F^{<}(x)\right]^{n-k}
$$

and similarly for $f_{k: n}^{>}(x)$.
So we have

$$
f_{k: n}(x)=f_{k: n}^{<}(x)[0 \leqslant x \leqslant 1 / 2]+f_{k: n}^{>}(x)[1 / 2<x \leqslant 1 / \sqrt{2}]
$$

and

$$
\mu_{k: n}=\mu_{k: n}^{<}+\mu_{k: n}^{>}, \quad 1 \leqslant k \leqslant n
$$

Exact theory for mean distances on a torus 3

To get the mean, we can do the lower integral exactly:

$$
\begin{aligned}
\mu_{k: n}^{<} & =\int_{0}^{1 / 2} t f_{k: n}^{<}(t) d t \\
& =\frac{(\pi / 4)^{k}}{(2 k+1)} \frac{\Gamma(n+1)}{\Gamma(k) \Gamma(n-k+1)} \mathrm{F}\left(\left.\begin{array}{c}
k+1 / 2 \quad k-n \\
k+3 / 2
\end{array} \right\rvert\, \pi / 4\right)
\end{aligned}
$$

but the upper integral

$$
\mu_{k: n}^{>}=\int_{1 / 2}^{1 / \sqrt{2}} t f_{k: n}^{>}(t) d t
$$

will have to be approximated. Luckily, it is typically a very small correction term to $\mu_{k: n}^{<}$, and goes to zero geometrically with n.

Exact theory for mean distances on a torus 4

Because $k-n<0$, the hypergeometric function above is a terminating series:

$$
\mathrm{F}\left(\left.\begin{array}{c}
k+1 / 2 k-n \\
k+3 / 2
\end{array} \right\rvert\, \pi / 4\right)=\sum_{i=0}^{n-k} \frac{(k+1 / 2)^{\bar{i}}(k-n)^{\bar{i}}}{(k+3 / 2)^{\bar{i}}} \frac{(\pi / 4)^{i}}{i!}
$$

It is quite feasible to evaluate $\mu_{k: n}$ exactly from this, but if desired we can use an integral representation of this function and Watson's lemma to find the large n asymptotics. I omit all the details of this. The results are on the next page.

Exact theory for mean distances on a torus 5

We now do asymptotics $(n \rightarrow \infty)$ for the mean distance to the k th neighbour

$$
\begin{aligned}
\mu_{1: n}^{<} & \sim n\left[\frac{1}{2} n^{-3 / 2}-\frac{3}{16} n^{-5 / 2}+\frac{25}{256} n^{-7 / 2}-\frac{105}{2048} n^{-9 / 2}+\ldots\right] \\
\mu_{2: n}^{<} & \sim n^{\underline{2}}\left[\frac{3}{4}(n-1)^{-5 / 2}-\frac{45}{32}(n-1)^{-7 / 2}+\frac{1155}{512}(n-1)^{-9 / 2}-\ldots\right] \\
\mu_{3: n}^{<} & \sim n^{\underline{3}}\left[\frac{15}{16}(n-2)^{-7 / 2}-\frac{525}{128}(n-2)^{-9 / 2}+\ldots\right] \\
\mu_{4: n}^{<} & \sim n^{\underline{4}}\left[\frac{35}{32}(n-3)^{-9 / 2}-\ldots\right] \\
& \cdots \\
\mu_{k: n}^{<} & \sim \Gamma(k+1 / 2) / \Gamma(k) n^{-1 / 2}
\end{aligned}
$$

Note: for the 2d Poisson process, we have $\frac{1}{2} n^{-1 / 2}$ exactly for the nearest neighbour ($k=1$)

Exact theory for mean distances on a torus 6

To compute the contribution to the mean from the upper integral, we need to do:

$$
\mu_{k: n}^{>}=\int_{1 / 2}^{1 / \sqrt{2}} t f_{k: n}^{>}(t) d t
$$

I do not know a way of approximating this for all n and k, but by making a series expansion of $f_{1: n}^{>}$around $1 / \sqrt{2}$ and just keeping the first term, for the nearest neighbour we get:

$$
\mu_{1: n}^{>} \approx(3-2 \sqrt{2})^{n}
$$

Thus a good approximation for the mean distance to the nearest neighbour is

$$
\mu_{1: n}=\mu_{1: n}^{<}+\mu_{1: n}^{>} \sim 1 / 2 n^{-1 / 2}-3 / 16 n^{-3 / 2}+(3-2 \sqrt{2})^{n}
$$

Almost sure connectivity results [mil70]

- Planar process of intensity λ in region R
- Let $p(r)=\operatorname{Pr}$ [every point of R covered by a disk radius r]
- Then, as $|R| \rightarrow \infty$

$$
p(r) \sim \exp \left[-\lambda|R| e^{-\pi \lambda r^{2}}\left(1+\pi \lambda r^{2}\right)\right]
$$

- This is plotted in blue on these graphs of simulation results

References 1

[gho51] B Ghosh, Random distances within a rectangle and between two rectangles, Bull Calcutta Math Soc 43, 17-24 (1951) MR 13,475a 60.0X
[dar53] D A Darling, On a class of problems related to the random division of an interval 24, 239-253 (1953)
[pyk65] R Pyke, Spacings, J. Roy. Stat. Soc. B27, 395-449 (1965)
[dav70] H A David Order Statistics, Wiley 1970
[mil70] R E Miles On the homogeneous planar point process, Math. Biosciences 6, 85-127 (1970)

References 2

[phi89] T K Philips, S Panwar and A Tantawi, Connectivity properties of a packet radio network model, IEEE Trans. Inf. Theory 35, 1044-7 (1989)
[che89] Y-C Cheng and T G Robertazzi Critical connectivity phenomena in multihop radio models, IEEE Trans. Comm. 37, 770-7 (1989)
[pit90] P Piret, On the connectivity of radio networks, IEEE Trans. Inf. Theory 37, 1490-2 (1990)
[kla90] M S Klamkin (ed), Problems in Applied Mathematics, SIAM 1990
[cre91] N A C Cressie, Statistics for spatial data, Wiley 1991

References 3

[bet02] C Bettstetter, On the minimum node degree and connectivity of a wireless multihop network, MOBIHOC'02 Lausanne http://portal.acm.org/citation.cfm?id=513811\&coll= portal\&dl=ACM\&ret=1
[eva02] D Evans, A J Jones and W M Schmidt, Asymptotic moments of near neighbour distance distributions, Proc Roy Soc Lon A 458, 1-11 (2002)
[ola03] S Olafsson, Capacity and connectivity in ad-hoc networks, http://technology.intra.bt.com/enterprise-research/ Comms/Newsletters/january2003.htm

