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Introduction

I consider connectivity of nodes with a radio range ρ placed
uniformly and randomly in a bounded region under various
models:

• Poisson 1d model: the nodes exist on all of R with a exponential distribution of
separation with parameter λ, and a window of unit length is placed over them.
The number of nodes visible through the window is Poisson distributed.

• fixed-n 1d model: there are exactly n nodes independently and uniformly placed
in [0, 1].

• Poisson 2d model: the nodes exist on all of R2 with a intensity λ, and a
finite-area window is placed over them. The number of nodes visible through the
window is Poisson distributed.

• fixed-n 2d model: there are exactly n nodes independently and uniformly placed
in a bounded region R.

Notation:
. pdf=probability density function
. cdf=cumulative distribution function
. The notation is sloppy in not distinguishing a RV X and its values x

. [[x]] is the indicator function: 1 if x is true, else 0
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Theory for the Poisson 1d model

• λ is the intensity of nodes per unit length

• The pdf of the internode distance d is f(d) = λe−λd

• The cdf of the internode distance is F (d) = 1−e−λd

• The expectation of d is E[d] = 1/λ
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More theory for the Poisson 1d model

We now place a unit length window over R and assume that n
nodes are visible. The following results are conditional on n

• There are n−1 internode intervals, and the cdf of the maximum interval is
Fn−1(d) = (1−e−λd)n−1

• the cdf of the minimum interval is F1(d) = 1−e−nλd

• the pdf of the minimum interval is f1(d) = nλe−nλd

• The expectation of the minimum interval is E[d(1)] = 1/(2λ), so is half the
expectation of the internode distance

• The intervals have correlation −1/n

• The probability of full connectivity for the n nodes is thus approximately (i.e.
ignoring correlation and edge effects) Fn−1(ρ) = (1−e−λρ)n−1

• This result is only approximate. We should expect deviations small n

The exact theory for the fixed-n case is here
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Order statistics theory [dav70]

Let x1, x2, ..., xn be RVs uniformly distributed in [0, 1].

Sort them in increasing order as x(1) 6 x(2) 6 ... 6 x(n).
• The pdf of x(k) is

1

(k−1)!

(n

k

)
x

k−1
(1−x)

n−k

• The cdf of the range r = x(n)−x(1) is nrn−1−(n−1)rn

• If wrs = x(s)−x(r), then the pdf of wrs is

w
s−r−1
rs (1−wrs)

n−s+r
/B(s−r, n−s+r+1)

• For the special case of adjacent nodes (s = r+1), this becomes n(1−wr,r+1)
n−1,

which gives a cdf of 1−(1−wr,r+1)
n

• However, the wr,r+1 are not independent random variables, so the probability
that the maximum of n−1 samples of wr,r+1 is less than a constant ρ, is NOT
[1−(1−ρ)n]n−1

. But this is approximately correct for large n and ρ near 1 and is
plotted in blue on the graphs of simulation results

. As ρ → 1, this becomes 1−(n−1)(1−ρ)n. cf. the exact equation
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Exact theory for the fixed-n 1d model

• Let yk = x(k)−x(k−1) be the gaps (k = 2, . . . , n), with y1 = x(1)

0 1x(1)

y1

x(2)

y2

x(3)

y3
. . .

. . . x(n)

• Their joint pdf is (for 1 6 m 6 n and
∑m

i=1 yi 6 1)

f(y1, y2, . . . , ym) =
n!

(n−m)!

(
1−

m∑
i=1

yi

)n−m

• If ci are constants such that
∑m

i=1 ci 6 1, then by integrating the pdf we obtain

Pr [y1 > c1, y2 > c2, . . . ] =

(
1−

m∑
i=1

ci

)n−1

• Boole's law for the probability of at least one event Ai of n events
A1, A2, . . . , An occurring is

Pr

[
n⋃

i=1

Ai

]
=
∑

i

Pr [Ai]−
∑∑

i<j

Pr [AiAj]+· · ·+(−1)
n−1Pr [A1A2 . . . An]

Keith Briggs Connectivity of nodes 7 of 33



Exact theory for the fixed-n 1d model (cotd.)

• We don't care about y1, so we put c1 = 0

• Using Boole's law, the probability that the largest yk exceeds some constant ρ is

Pr
[
y(n) > ρ

]
= (n−1) Pr [y1 > ρ]−

(n−1

2

)
Pr [y1 > c1, y2 > c2]+. . .

• Thus

Pr [fully connected] = 1−
b1/ρc∑
i=1

(−1)
i+1
(n−1

i

)
(1−iρ)

n

• This is plotted as a red line on the following pages

• Note that for ρ > 1/2, this is exactly 1−(n−1)(1−ρ)n.

. cf. an approximation
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Probability of connectivity for the fixed-n 1d model
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Theory for the Poisson 2d model [cre91]

• λ is the intensity of nodes per unit area

• The pdf of the nearest neighbour distance d is
f(d) = 2πλde−λπd2

• The cdf of d is F (d) = 1−e−πλd2

• The expectation of d is E[d] = 1/(2λ1/2)

• The variance of d is (4−π)/(4πλ)

• The probability of a node being isolated (i.e. having no neigh-
bour within range ρ) is e−πλρ2
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Theory for the Poisson 2d model

We now place a window R of area A over R2

• The number of nodes visible will be Poisson distributed with mean λA

• Conditional on n nodes being visible, and if the nearest neighbour distances were
independent (which is not the case) the probability of no node being isolated

would be
(
1−e−πλρ2

)n

• There is no simple way to compute the probability of full connectivity. However,
since a necessary condition is that no node is isolated, the last expression is an
approximate upper bound for the fixed-n model and is plotted in red on the
following graphs

• The blue curve is the asymptotic probability of the whole region R being covered,
using this theory
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Simulation results - square, ρ = 0.1, 0.3
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Simulation results - torus, ρ = 0.1, 0.3

ρ=0.10
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Simulation results - unit-radius disk, ρ = 0.1, 0.3

ρ=0.10
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Non-homogeneous Poisson process

Example: intensity falls off exponentially from an access point
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Delaunay triangles 1[kla90]

• Pick one node O from a planar Poisson process of intensity λ

• Consider triangles formed by two other nodes

• Call it empty if no other nodes are in the triangle

• Call it very empty if no other nodes are in the circumcircle
of the triangle

• An empty triangle:
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Delaunay triangles 2

The Delaunay triangulation consists of very empty triangles only.
The second figure shows the Voronoi tesselation superimposed.
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Delaunay triangles 3

• Let a and b be the lengths of the two edges adjacent to O
and θ the angle

• For very empty triangles, the joint pdf is

2πabλ4 exp
[
−πλ2 a2+b2−2ab cos θ

4 sin2 θ

]

• For very empty triangles, the pdf of the area A is
λ2A exp (−λA)

• For very empty triangles, the mean of a is 32
9πλ

• For empty triangles, the pdf is 2πabλ4 exp
[
−λ2ab sin(θ)/2

]
• In both cases, the mean number of triangles at O is 6
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Delaunay triangles 4

Integrating out over side b and angle θ, we get for the pdf of
side a:

4aλ

∫ π

0
sin2 θ exp

[
−πa2λ

4 sin2 θ

] [
1+eα2ν2

α|ν|π1/2(erf(α|ν|)+sign(ν))
]
dθ

where

α =
sin θ

(πλ)1/2

ν =
aλ cos θ

2 sin2 θ
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Delaunay triangles 5

edge length distribution in Delaunay tesselation
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Distance distribution for some regions

Two points independently uniformly distributed in a region R;
the pdf of the distance d is f(d), mean distance is µ:

• R = unit interval, f(d) = 2(1−d)[[0 6 d 6 1]], µ = 1/3

• R = 1-torus, f(d) = 2[[0 6 d 6 1/2]], µ = 1/4

• R = 2-torus

f(d) =

{
2πd if 0 6 d < 1/2

2d
[
π−4 sec−1(2d)

]
if 1/2 6 d 6

√
2

µ =
[√

2+log(1+
√

2)
]

/6

• R = unit radius disk, f(d) = d/π
[
4 arctan

(√
4−d2/d

)
−d

√
4−d2

]
[[0 6 d 6 2]],

µ = 128/(45π)

• R = unit sphere, µ = 36/35

• R = unit square, see next slide
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Asymptotics for near neighbours

• Put n points in a unit torus in R2

• Let dk = be the distance to kth nearest neighbour

• Then it is known that ([eva02]): E[dk] = π−1/2 Γ(k+1/2)
Γ(k) n−1/2+

O(n−3/2)

• So E[d1] = 1/2 n−1/2+O(n−3/2)
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Asymptotics for nearest neighbours - simulations

mean distance to neighbours on a torus
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asymptotic, ∗ is exact value for n = 2, k = 1, namely [21/2+log(1+21/2)]/6
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Exact theory for mean distances on a torus 1

Recall that our pdf and cdf are defined piecewise: I will use
< and > to indicate the pieces on [0, 1/2] and [1/2, 1/

√
2]

respectively:

f<(x) = 2πx

f>(x) = 2x
[
π−4 sec−1(2x)

]
F<(x) = πx2

F>(x) =
√

4x2−1+x2 [
π−4 sec−1(2x)

]
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Exact theory for mean distances on a torus 2

I will use the subscript k :n to denote the kth order statistic in
a sample of size n

Thus

f<
k:n(x) =

Γ(n+1)
Γ(k)Γ(n−k+1)

f<(x) [F<(x)]k−1 [1−F<(x)]n−k

and similarly for f>
k:n(x).

So we have

fk:n(x) = f<
k:n(x)[[0 6 x 6 1/2]]+f>

k:n(x)[[1/2 < x 6 1/
√

2]]

and
µk:n = µ<

k:n+µ>
k:n, 1 6 k 6 n
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Exact theory for mean distances on a torus 3

To get the mean, we can do the lower integral exactly:

µ<
k:n =

∫ 1/2

0
t f<

k:n(t) dt

=
(π/4)k

(2k+1)
Γ(n+1)

Γ(k)Γ(n−k+1)
F
(

k+1/2 k−n

k+3/2

∣∣∣ π/4
)

but the upper integral

µ>
k:n =

∫ 1/
√

2

1/2
t f>

k:n(t) dt

will have to be approximated. Luckily, it is typically a very
small correction term to µ<

k:n, and goes to zero geometrically
with n.
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Exact theory for mean distances on a torus 4

Because k−n < 0, the hypergeometric function above is a
terminating series:

F
(

k+1/2 k−n

k+3/2

∣∣∣ π/4
)

=
n−k∑
i=0

(k+1/2)i(k−n)i

(k+3/2)i

(π/4)i

i!

It is quite feasible to evaluate µk:n exactly from this, but if
desired we can use an integral representation of this function
and Watson's lemma to find the large n asymptotics. I omit all
the details of this. The results are on the next page.
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Exact theory for mean distances on a torus 5

We now do asymptotics (n →∞) for the mean distance to the
kth neighbour

µ<
1:n ∼ n

[
1
2

n−3/2− 3
16

n−5/2+
25
256

n−7/2− 105
2048

n−9/2+. . .

]
µ<

2:n ∼ n2
[
3
4

(n−1)−5/2−45
32

(n−1)−7/2+
1155
512

(n−1)−9/2−. . .

]
µ<

3:n ∼ n3
[
15
16

(n−2)−7/2−525
128

(n−2)−9/2+. . .

]
µ<

4:n ∼ n4
[
35
32

(n−3)−9/2−. . .

]
. . .

µ<
k:n ∼ Γ(k+1/2)/Γ(k) n−1/2

Note: for the 2d Poisson process, we have 1
2 n−1/2 exactly for the nearest neighbour

(k = 1)
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Exact theory for mean distances on a torus 6

To compute the contribution to the mean from the upper
integral, we need to do:

µ>
k:n =

∫ 1/
√

2

1/2
t f>

k:n(t) dt

I do not know a way of approximating this for all n and k,
but by making a series expansion of f>

1:n around 1/
√

2 and just
keeping the first term, for the nearest neighbour we get:

µ>
1:n ≈ (3−2

√
2)n

Thus a good approximation for the mean distance to the nearest
neighbour is

µ1:n = µ<
1:n+µ>

1:n ∼ 1/2 n−1/2−3/16 n−3/2+(3−2
√

2)n
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Almost sure connectivity results [mil70]

• Planar process of intensity λ in region R

• Let p(r) = Pr [every point of R covered by a disk radius r]

• Then, as |R| → ∞

p(r) ∼ exp
[
−λ|R| e−πλr2

(1+πλr2)
]

• This is plotted in blue on these graphs of simulation results
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