
DCCP
(Datagram Congestion Control Protocol)

Keith Briggs

Keith.Briggs@bt.com

research.btexact.com/teralab/keithbriggs.html

CRG meeting 2003 Nov 21 (should have been 17) 15:00

typeset 2003 November 21 10:04 in pdfLATEX on a linux system

DCCP 1 of 25

http://research.btexact.com/teralab/keithbriggs.html


In the wireless environment

F In fixed networks, packet losses are usually due to network
congestion

F Changes in data rate often enough to improve QoS

F In wireless networks many other factors: access to radio link,
interference, fading etc

F Difficult to offer guarantees - continuously changing conditions

DCCP 2 of 25



Proposal

F Adapt applications using:

F Codec, codec specific parameters (eg quality factor for
MJPEG), frame sizes, frame rates etc

F Work with Agora System's ISABEL Light real-time video confer-
encing application

F Develop application with Agora Systems and implement into
the QoS testbed

F Interface application with DCCP

DCCP 3 of 25



ISABEL Light

F Developed by Agora Systems under the BRAIN & MIND EU
projects

F Records lost packets using RTP numbering - decides whether
to upgrade/downgrade codec

F Adaptation steps manually configured - audio & video codec,
video size, frame rate and quality

DCCP 4 of 25



Demonstration

F ISABEL Light application running between two laptops with
web
cameras over peer-peer WLAN link

F Adaptation steps configured to suit properties of link

F Traffic generated on link to force adaptation

DCCP 5 of 25



What is DCCP?

F Datagram Congestion Control Protocol (DCCP) provides features
including unreliable flow of datagrams with acknowledgements,
reliable handshake for connection setup and teardown, to-
gether with other features

F It is intended for applications that require the flow-based
semantics of TCP, but which do not want TCP's in-order
delivery and reliability semantics

DCCP 6 of 25



Interface with DCCP

F Translation link being written to run ISABEL Light application
over DCCP instead of UDP

F Using kernel-based implementation of DCCP

F Unlikely to be large improvement gains since ISABEL Light
application will not be aware of new DCCP layer and therefore
cannot take advantage if it

DCCP 7 of 25



DCCP features

F An unreliable flow of datagrams, with acknowledgements

F Reliable handshake for connection setup and teardown

F Reliable negotiation of features

F A choice of TCP-friendly congestion control mechanisms, in-
cluding TCP-like congestion control (CCID 2) and TCP-Friendly
Rate Control (CCID 3). CCID 2 uses a version of TCP's con-
gestion control mechanisms, and is appropriate for flows that
want to quickly take advantage of available bandwidth, and
can cope with quickly changing send rates; CCID 3 is appro-
priate for flows that require a steadier send rate

F Options that tell the sender, with high reliability, which pack-
ets reached the receiver, and whether those packets were
ECN marked, corrupted, or dropped in the receive buffer

DCCP 8 of 25



Differences from TCP

F DCCP is a packet stream protocol, not a byte stream protocol.
The application is responsible for framing

F Unreliability: DCCP will never retransmit a datagram. Options
are retransmitted as required to make feature negotiation and
ack information reliable

F Packet sequence numbers. Sequence numbers refer to packets,
not bytes. Every packet sent by a DCCP endpoint gets a new
sequence number

F Choice of congestion control. One such feature is the conges-
tion control mechanism to use for the connection. In fact, the
two endpoints can use different congestion control mechanisms
for their data packets: In an A<->B connection, data packets
sent from A->B can use CCID 2, and data packets sent from
B->A can use CCID 3.

F Different acknowledgement formats. The CCID for a connection
determines how much ack information needs to be transmit-

DCCP 9 of 25



ted. In CCID 2 (TCP-like), this is about one ack per 2 packets,
and each ack must declare exactly which packets were re-
ceived (Ack Vector option); in CCID 3 (TFRC), it's about one
ack per RTT, and acks must declare at minimum just the
lengths of recent loss intervals

F Distinguishing different kinds of loss. A Data Dropped option
lets one endpoint declare that a packet was dropped because
of corruption, because of receive buffer overflow, and so on.
This facilitates research into more appropriate rate-control
responses for these non-network-congestion losses (although
currently all losses will cause a congestion response)

F Integrated support for mobility

DCCP 10 of 25



Our testbed

DCCP 11 of 25



DCCP implementations

F McManus: kernel-space - requires patching the linux kernel

F Evlogimenis et al.: user space

F uses an underlying UDP socket

F single-threaded

F ask/choose cycle for option request (CCID)

F reliable acks a problem

F pro: easy to debug
F con: API differs from socket standard

DCCP 12 of 25



DCCP performance testing

F We send traffic over several hops and measure RTT

F We generate congestion traffic on intermediate links

F Results below are for 4 hops, with Poisson traffic at λ 4kb
packets
per second

DCCP 13 of 25



DCCP performance results

ICMP RTT with congestion

0 100 200 300 400 500
0

2

4

6

8

10

Poisson rate

R
T

T
/m

s

kernel DCCP RTT with congestion

0 100 200 300 400 500
0

2

4

6

8

10

Poisson rate

R
T

T
/m

s

Berkeley DCP RTT with congestion

0 100 200 300 400 500
0

2

4

6

8

10

Poisson rate

R
T

T
/m

s

DCCP 14 of 25



References

DCCP specs: http://www.icir.org/kohler/dccp/

Pedro Ruiz, Emilio Garcia: Improving user-perceived QoS in
Mobile and wireless IP networking using real-time adaptive
multimedia applications, 2002 http://www.agorasystems.com

D. Sisalem.: End-to-end quality of service control using adap-
tive applications, 1997

Schulzrinne et al.: RTP: A transport protocol for real-time
applications, RFC 1889, 1996

DCCP 15 of 25



Source

Authors: Timothy Sohn, Eiman Zolfaghari, Alkis Evlogimenos,
Khian Hao Lim, Kevin Lai

http://www.cs.berkeley.edu/~laik/projects/dccp/

last updated: 2002 May 24

Version 0.0.1

Files required: dcp.tar.gz, libkl-1.3.8.tar.gz

blas and lapack for performance monitoring

Support documents: http://www.icir.org/kohler/dcp/

NB: build libkl first

DCCP 16 of 25

http://www.cs.berkeley.edu/~laik/projects/dccp/
http://www.icir.org/kohler/dcp/


Design

totally in user space - differs from McManus' implementation
http://www.ducksong.com:81/dccp/ which requires linux kernel
patches

• pro: easy to debug

• con: API differs from socket standard

uses an underlying UDP socket

single-threaded

ask/choose cycle for option request (CCID)

reliable acks a problem

DCCP 17 of 25

http://www.ducksong.com:81/dccp/


API - uses callbacks

1. DCP init Initializes the library.

2. DCP main loop Enters the DCP library main loop.

3. DCP socket Creates a new socket.

4. DCP bind Binds a socket to a port.

5. DCP listen Sets up the socket for incoming connections.

6. DCP connect handle Sets up the success and error connect handlers for the
specified socket.

7. DCP connect Completes the connection of the specified socket.

8. DCP close handle Sets up the success and error close handlers for the specified
socket.

9. DCP close Closes the socket.

DCCP 18 of 25



10. DCP accept handle Sets up the success and error accept handlers for the
specified socket.

11. DCP accept Creates a socket from an incoming request off the listening socket

12. DCP recv handle Sets up the success and error receive handlers for the specified
socket.

13. DCP recv Reads a packet’s worth of data off the packet buffer.

14. DCP send handle Sets up success and error send handlers for the socket.

15. DCP send Sends a packet of data.

16. DCP setsockopt handle Sets up success and error setsockopt handlers for the
socket. It also specifies the changed option.

17. DCP getsockopt Retrieves information about an option from the specified
socket.

DCCP 19 of 25



Instant Calls

DCP init, DCP main loop, DCP socket, DCP bind and DCP listen
are instantaneous calls that do not require the use of callbacks.

DCP init and DCP main loop functions are unrelated to any in
the conventional socket interface. Given the user-level imple-
mentation, there is a need to initialize the underlying UDP
socket and it is done through the DCP init function. To suit
the event-based engine, the application has to tie callbacks to
events and finally enter a loop where all events take place. In
our implementation, this loop happens as a last function call
to DCP main loop.

DCCP 20 of 25



Connect and Close

DCP connect and DCP close are slightly different from the rest.
Their corresponding handle calls serve only to tie the applica-
tion layer callbacks to the DCP-sockets. The DCP connect call
initiates the sending of the request packet and upon ending
the proper starting sequence, would invoke the callback. The
callback can then proceed to call the send and receive func-
tions. The DCP close call does essentially the same thing for
the closing sequence.

DCCP 21 of 25



Accept, Recv and Send

These three calls are similar in semantics. Their handlers also
tie application level callbacks to the sockets but at the same
time creates a holding back effect. This is best explained with
an example. How the application could send a packet is by
first calling DCP send handle which ties the sending callback
to the socket. This is exactly the point where the Congestion
Control ID's control the flow of the packets. The Congestion
Control ID in charge of sending only invokes the application's
sending callback when sending is allowed. The application's
sending callback would then call DCP send which actually sends
out the packet. DCP recv handle and DCP accept handle work
similarly. They serve to register the desire of the application
to receive or accept through the socket. When a packet arrives
or when there is a new connection to accept, the application's
callback would then be invoked. These would then call the
corresponding calls of DCP recv or DCP accept.

DCCP 22 of 25



getsockopt and setsockopt

DCP setsockopt handle is different from the rest of the calls.
First, it does not have a corresponding DCP getsockopt call.
Requested options and callbacks are passed in the call to
facilitate feature negotiation. The success or error callbacks
serve to inform the application of the success or failure of the
feature negotiation. The failure callback could be invoked upon
receiving a CHOOSE and the application could then observe the
CHOOSE values given and decide on a different feature value
to negotiate. DCP getsockopt then serves for the application to
check the present feature values on the socket. Its semantics
are very similar to that of the conventional socket interface.

DCCP 23 of 25



Issues

Sequence numbers
• 24 bits ⇒ 25GB

• 32 bits possible

User-space overheads
• buffer copying

• lack of timer resolution

the big question: should we write an interface so that we
can easily use any application with this DCCP or the kernel
version?

DCCP 24 of 25



Example server code

dcp simple server0.c

DCCP 25 of 25

file:///home/kbriggs/tex/dcp_simple_server0.c.html

