Discrete Green's functions on graphs

Keith Briggs

Keith.Briggs@bt.com
research.btexact.com/teralab/keithbriggs.html

2003 Sep 231500
typeset 2003 September 23 17:02 in pdfiATEX on a linux system

Adjacency matrix

* Let Γ be an arbitrary graph with n nodes
\star Let A be the adjacency matrix of Γ

Graph eigenvalues

* Let Γ be an arbitrary graph with n nodes
* Let A be the adjacency matrix of Γ
* Let D be the diagonal matrix with $D_{x x}$ the degree of node x
* Let $L \equiv D-A$ be the (combinatorial) Laplacian matrix
* The normalized Laplacian, $\mathcal{L}=D^{-1 / 2} L D^{-1 / 2}$, is

$$
\mathcal{L}(x, y)=\left\{\begin{array}{cl}
1, & \text { if } x=y \\
-1 / \sqrt{d_{x} d_{y}}, & \text { if } x \sim y \\
0, & \text { otherwise } .
\end{array}\right.
$$

* The discrete Laplace operator Δ is

$$
\Delta(x, y)=\left\{\begin{array}{cl}
1, & \text { if } x=y \\
-1 / d_{x}, & \text { if } x \sim y \\
0, & \text { otherwise } .
\end{array}\right.
$$

Subgraphs and boundaries

* Let S be a subgraph
* The boundary is $\partial S=\{y \notin S$ s.t. $\exists x \in S, x \sim y\}$
* We define the Dirichlet versions of L_{S}, \mathcal{L}_{S}, and Δ_{S} as the results of deleting the rows and columns corresponding to $\Gamma \backslash S$ from L, \mathcal{L}, and Δ, respectively.
* Then $S \subsetneq V, \Delta_{S}, L_{S}$ and \mathcal{L}_{S} are invertible
* The Green's function G and normalized Green's function \mathcal{G} are determined by

$$
\begin{aligned}
\Delta_{S} G & =G \Delta_{S}=I_{S} \\
\mathcal{L}_{S} \mathcal{G} & =\mathcal{G} \mathcal{L}_{S}=I_{S}
\end{aligned}
$$

Random walks

* Let $P(x, y)$ be the transition probability matrix for random walk on S with absorbing states $V \backslash S$, where the probability $P(x, y)$ of moving to state y from state x is $1 / d_{x}$ if $x \sim y$ and 0 otherwise. Then $\Delta_{S}=I-P$, and $(I-P)^{-1}=I+P+P^{2}+\cdots$ gives

$$
G(x, y)=\sum_{n} P_{n}(x, y),
$$

where $P_{n}(x, y)$ is the n-step transition probability matrix

Example - line graph

$\star \Delta f(x)=f(x)-f(x+1) / 2-f(x-1) / 2$

* example: 5 nodes, S is the 3 interior nodes
* $2 G=\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3\end{array}\right]$
* eigenvalues $1-\cos (\pi / 4), 1-\cos (2 \pi / 4), 1-\cos (3 \pi / 4)$

Hitting times

* The hitting time $Q(x, y)$ of a simple random walk starting at vertex x with target vertex y is the expected number of steps to reach vertex y for the first time by starting at x and at each step moving to any neighbour of x with equal probability.

$$
Q(x, y)=\frac{\operatorname{vol}(\Gamma)}{d_{y}} \mathcal{G}(y, y)-\frac{\operatorname{vol}(\Gamma)}{\sqrt{d_{x} d_{y}}} \mathcal{G}(x, y)
$$

* volume is sum of vertex degrees

Diffusion

* Eigenvalues λ_{i} and eigenfunctions ϕ_{i}
* heat kernel

$$
H_{t}(x, y)=\sum_{i} \exp \left(-\lambda_{i} t\right) \phi_{i}(x) \phi_{i}(y)
$$

* satisfies

$$
\frac{d}{d t} f=-\mathcal{L}_{S} f
$$

$\star H_{t}=\exp \left(-t \mathcal{L}_{S}\right)$

* this solves the diffusion problem - is this useful for virus spreading and gossip algorithms?

References

R. Ellis 2002 Chip-firing games with Dirichlet eigenvalues and discrete Green's functions, PhD thesis

Fan Chung \& S-T Yau 2000 Discrete Green's functions
N. Biggs, Algebraic graph theory, CUP 1993
B. Bollobás, Modern graph theory, Springer-Verlag 2002
R. Diestel, Graph theory, Springer-Verlag 2000

