Discrete Green's functions on graphs

Keith Briggs

Keith.Briggs@bt.com

research.btexact.com/teralab/keithbriggs.html

2003 Sep 23 1500

typeset 2003 September 23 17:02 in ${\rm pdfIAT}_{\!E\!}X$ on a linux system

Discrete Green's functions on graphs 1 of 9

Adjacency matrix

 \bigstar Let Γ be an arbitrary graph with n nodes

 \bigstar Let A be the adjacency matrix of Γ

Graph eigenvalues

- \bigstar Let Γ be an arbitrary graph with n nodes
- \bigstar Let A be the adjacency matrix of Γ
- \star Let D be the diagonal matrix with D_{xx} the degree of node x
- \star Let $L \equiv D A$ be the (combinatorial) Laplacian matrix
- * The normalized Laplacian, $\mathcal{L} = D^{-1/2}LD^{-1/2}$, is

$$\mathcal{L}(x,y) = \begin{cases} 1, & \text{if } x = y \\ -1/\sqrt{d_x d_y}, & \text{if } x \sim y \\ 0, & \text{otherwise}. \end{cases}$$

 \star The discrete Laplace operator Δ is

$$\Delta(x,y) = \begin{cases} 1, & \text{if } x = y \\ -1/d_x, & \text{if } x \sim y \\ 0, & \text{otherwise.} \end{cases}$$

Subgraphs and boundaries

- \bigstar Let S be a subgraph
- * The boundary is $\partial S = \{y \notin S \text{ s.t. } \exists x \in S, x \sim y\}$
- * We define the *Dirichlet* versions of L_S , \mathcal{L}_S , and Δ_S as the results of deleting the rows and columns corresponding to $\Gamma \setminus S$ from L, \mathcal{L} , and Δ , respectively.
- \star Then $S \subsetneq V$, Δ_S , L_S and \mathcal{L}_S are invertible
- **\star** The *Green's function G* and *normalized Green's function G* are determined by

$$\Delta_S G = G \ \Delta_S = I_S$$
$$\mathcal{L}_S \mathcal{G} = \mathcal{G} \ \mathcal{L}_S = I_S$$

Random walks

★ Let P(x,y) be the transition probability matrix for random walk on S with absorbing states $V \setminus S$, where the probability P(x,y) of moving to state y from state x is $1/d_x$ if $x \sim y$ and 0 otherwise. Then $\Delta_S = I - P$, and $(I - P)^{-1} = I + P + P^2 + \cdots$ gives

$$G(x,y) = \sum_{n} P_n(x,y),$$

where $P_n(x,y)$ is the *n*-step transition probability matrix

Example - line graph

★
$$\Delta f(x) = f(x) - f(x+1)/2 - f(x-1)/2$$

 \star example: 5 nodes, S is the 3 interior nodes

$$\star 2G = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

★ eigenvalues $1 - \cos(\pi/4), 1 - \cos(2\pi/4), 1 - \cos(3\pi/4)$

Keith Briggs

Hitting times

★ The hitting time Q(x, y) of a simple random walk starting at vertex x with target vertex y is the expected number of steps to reach vertex y for the first time by starting at xand at each step moving to any neighbour of x with equal probability.

$$Q(x,y) = \frac{vol(\Gamma)}{d_y} \mathcal{G}(y,y) - \frac{vol(\Gamma)}{\sqrt{d_x d_y}} \mathcal{G}(x,y).$$

 \star volume is sum of vertex degrees

*

Diffusion

 \star Eigenvalues λ_i and eigenfunctions ϕ_i

\star heat kernel

$$H_t(x,y) = \sum_i \exp(-\lambda_i t) \phi_i(x) \phi_i(y)$$

$$\frac{d}{dt}f = -\mathcal{L}_S f$$

 $\star H_t = \exp(-t\mathcal{L}_S)$

★ this solves the diffusion problem - is this useful for virus spreading and gossip algorithms?

References

- R. Ellis 2002 Chip-firing games with Dirichlet eigenvalues and discrete Green's functions, PhD thesis
- Fan Chung & S-T Yau 2000 Discrete Green's functions
- N. Biggs, *Algebraic graph theory*, CUP 1993
- B. Bollobás, Modern graph theory, Springer-Verlag 2002
- R. Diestel, Graph theory, Springer-Verlag 2000