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Outline

� Asynchronous distributed algorithms (ADAs)

� Simulation techniques

� Some examples

Theme: atheism
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Asynchronous distributed model

� Network of identical nodes, with message q

Each knows only its neighbours

Each performs the same subalgorithm

Each runs asynchronously wrt neighbours

a finite set of pre-specified messages

Indefinite delay before reply to message
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Cooperation of nodes

Required: to perform some useful global actions:

Reboot system

Detect node failures

Count total number of nodes

Name nodes and elect leader

Build spanning trees

Find shortest paths

Compute and optimize network flows

Distributed algorithms – p.4/16



Cooperation of nodes

Required: to perform some useful global actions:

� Reboot system

Detect node failures

Count total number of nodes

Name nodes and elect leader

Build spanning trees

Find shortest paths

Compute and optimize network flows

Distributed algorithms – p.4/16



Cooperation of nodes

Required: to perform some useful global actions:

� Reboot system

� Detect node failures

Count total number of nodes

Name nodes and elect leader

Build spanning trees

Find shortest paths

Compute and optimize network flows

Distributed algorithms – p.4/16



Cooperation of nodes

Required: to perform some useful global actions:

� Reboot system

� Detect node failures

� Count total number of nodes

Name nodes and elect leader

Build spanning trees

Find shortest paths

Compute and optimize network flows

Distributed algorithms – p.4/16



Cooperation of nodes

Required: to perform some useful global actions:

� Reboot system

� Detect node failures

� Count total number of nodes

� Name nodes and elect leader

Build spanning trees

Find shortest paths

Compute and optimize network flows

Distributed algorithms – p.4/16



Cooperation of nodes

Required: to perform some useful global actions:

� Reboot system

� Detect node failures

� Count total number of nodes

� Name nodes and elect leader

� Build spanning trees

Find shortest paths

Compute and optimize network flows

Distributed algorithms – p.4/16



Cooperation of nodes

Required: to perform some useful global actions:

� Reboot system

� Detect node failures

� Count total number of nodes

� Name nodes and elect leader

� Build spanning trees

� Find shortest paths

Compute and optimize network flows

Distributed algorithms – p.4/16



Cooperation of nodes

Required: to perform some useful global actions:

� Reboot system

� Detect node failures

� Count total number of nodes

� Name nodes and elect leader

� Build spanning trees

� Find shortest paths

� Compute and optimize network flows

Distributed algorithms – p.4/16



Simulating an ADA on one processor

In decreasing order of weight:

� unix processes

� kernel threads

� threads in python, java etc.

� other tricks
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Python threads

import threading

class Node:

   def init(links):
     message_queue=[]
     # ...

   def run():
     while 1:
       # ...

   def send(target):
     # ...

   def receive(source):
     # ...

nodes=[Node([2,3]),Node([3]),Node([1])]

for node in nodes:
  Thread(node.run).start()
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Counting all nodes

All nodes asleep except 0, who is awake and
sends to all neighbours

� if receiver awake: return ‘reject’

� if receiver asleep:

� wake up and relay message to neighbours

� return number of nodes from relay replies

� receiver returns sum

�

to requester
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Shortest path routing to node 0

Asynchronous Bellman-Ford algorithm:

� �� �

min� � neighbours of node

	
� �
 � � � 
 �

where:

� � �� �

is node

�

’s current estimate of the
shortest path to node 0

� � �
 �

is the distance to node




(one hop)

Termination?
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Building a spanning tree

Root node has weight 1

while 1:

� node sends its weight to neighbours

� if receiver is unweighted, adopt sender’s
weight+1

� else if receiver’s weight � sender’s weight

�

� receiver adopts new parent
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Layering

sorting, flows, 
 
 


routing
counting; spanning tree
reboot; failure detection

adjacency
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Electrical circuits 1

� Digraph

�

with ��� the resistance of edge
�

� Problem 1: translate graph topology (known
only locally) to circuit equations

� Problem 2: solve these equations

� Apply Kirchhoff’s current law (KCL),
Kirchhoff’s voltage law (KVL), and Ohm’s Law
( L) to circuit

� Let � be the voltage vector and

�

the current
vector (in edge space)
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Electrical circuits 2

� is the adjacency matrix and is the degree
matrix

� Find incidence matrix

�

from
� �T � �

Then KCL is

�� � �

� Build a spanning tree

�

. Edges in

�

are
branches, other edges are chords. Each
chord has a fundamental cycle (FC)

� �

: matrix with one column for each edge, with
elements being the coefficients of the
corresponding FC in the edge space

� Then KVL is

�T � � �

� L is � � � � � ��
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The solution!

� � � � �, where

�

is the conductance matrix

� � � �
� � � �

,

� � diag

� ���! ��"  
 
 

�

� � � �

is the weighted Moore-Penrose
pseudoinverse of

�

with weight

�

. If

� � T , then

� � �

� � � � �

T

# �

� I have developed an algorithm for incremental
computation of

� � �

, which can be applied as
the columns of

�

are found by remote nodes
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Example
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Example cotd
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