Distributed algorithms

Keith Briggs

Keith.Briggs@bt.com
more.btexact.com/people/briggsk2/

“Texact

TECHNOLOGIES

2002 October 24 1415

TYPESET IN ATEXZ2E ON A LINUX SYSTEM

l Distributed algorithms — p.1/16




Outline

)

e Asynchronous distributed algorithms (ADAS)
e Simulation techniques

e Some examples

l Distributed algorithms — p.2/16




Outline

)

e Asynchronous distributed algorithms (ADAS)
e Simulation techniques

o « Some examples

Theme: atheism I

. Distributed algorithms — p.2/16




Asynchronous distributed model

e Network of identical nodes, with message ¢

. Distributed algorithms — p.3/16




Asynchronous distributed model

e Network of identical nodes, with message ¢

e Each knows only its neighbours

. Distributed algorithms — p.3/16




Asynchronous distributed model

e Network of identical nodes, with message ¢

e Each knows only its neighbours

e Each performs the same subalgorithm

. Distributed algorithms — p.3/16




Asynchronous distributed model

e Network of identical nodes, with message ¢
e Each knows only its neighbours
e Each performs the same subalgorithm

e Each runs asynchronously wrt neighbours

. Distributed algorithms — p.3/16




Asynchronous distributed model

e Network of identical nodes, with message ¢
e Each knows only its neighbours

e Each performs the same subalgorithm

e Each runs asynchronously wrt neighbours

e J a finite set of pre-specified messages

. Distributed algorithms — p.3/16




Asynchronous distributed model

e Network of identical nodes, with message ¢
e Each knows only its neighbours

e Each performs the same subalgorithm

e Each runs asynchronously wrt neighbours
e J a finite set of pre-specified messages

 Indefinite delay before reply to message
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Required: to perform some useful global actions:
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Cooperation of nodes

)

Required: to perform some useful global actions:
e Reboot system

e Detect node failures

e Count total number of nodes
« Name nodes and elect leader
e Build spanning trees

e Find shortest paths

 Compute and optimize network flows
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Simulating an ADA on one processor

)

In decreasing order of weight:

e UNIX processes

e kernel threads

 threads in python, java etc.

e Other tricks
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Python threads

| nport threading
cl ass Node:

def 1 nit(links):
nessage_queue=|[ ]

7.
def run():
while 1:

Ho.

def send(target):
#oo..

def receive(source):
#o.o..

nodes=[ Node([ 2, 3] ), Node([ 3] ), Node([1])]

for node in nodes:
Thread(node. run).start ()
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Counting all nodes

All nodes asleep except 0, who Is awake and
sends to all neighbours

* If receiver awake: return ‘reject’

e If recelver asleep:

« wake up and relay message to neighbours
 return number of nodes from relay replies

» receiver returns sum+-1 to requester
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Shortest path routing to node O

Asynchronous Bellman-Ford algorithm:

x(1) min x(j) + d(j)

j € neighbours of node 1

where:

e x(1) IS node i's current estimate of the
shortest path to node O

e d(j) Is the distance to node j (one hop)

Termination?
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Building a spanning tree

Root node has weight 1

while 1:
e node sends its weight to neighbours

e If recelver is unweighted, adopt sender’s
weight+1

 else If recelver’s weight > sender’s weight+-1

* receiver adopts new parent
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Layering

sorting, flows, ...
routing

reboot; failure detection
adjacency
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Electrical circuits 1

)

e Digraph G with r, the resistance of edge k

* Problem 1: translate graph topology (known
only locally) to circuit equations

 Problem 2: solve these equations

* Apply Kirchhoff’s current law (KCL),
Kirchhoff’s voltage law (KVL), and Ohm’s Law
(QL) to circult

e Let v be the voltage vector and i the current
vector (in edge space)

Distributed algorithms — p.11/16




Electrical circuits 2

)

e A IS the adjacency matrix and D Is the degree
matrix

e Find incidence matrix B from BB' =D — A
Then KCL I1s Bi =0

e Build a spanning tree T. Edges in T are
branches, other edges are chords. Each
chord has a fundamental cycle (FC)

e C: matrix with one column for each edge, with
elements being the coefficients of the
corresponding FC Iin the edge space

e Then KVL is CTv = 0

e OL IS v = 41Tk
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The solution!

)

e 1 = Yv, where Y Is the conductance matrix
e Y =—CC™R R =diag(r1,72,...)

« C™Ris the weighted Moore-Penrose
pseudoinverse of C with weight R. If

R = WTW, then C*R = (WC)tWT

| have developed an algorithm for incremental

computation of C*R, which can be applied as
the columns of C are found by remote nodes
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Example
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