Distributed algorithms

Keith Briggs

Keith.Briggs@bt.com
more.btexact.com/people/briggsk2/

“Texact

TECHNOLOGIES

2002 October 24 1415

TYPESET IN ATEXZ2E ON A LINUX SYSTEM

l Distributed algorithms — p.1/16

Outline

)

e Asynchronous distributed algorithms (ADAS)
e Simulation techniques

e Some examples

l Distributed algorithms — p.2/16

Outline

)

e Asynchronous distributed algorithms (ADAS)
e Simulation techniques

o « Some examples

Theme: atheism I

. Distributed algorithms — p.2/16

Asynchronous distributed model

e Network of identical nodes, with message ¢

. Distributed algorithms — p.3/16

Asynchronous distributed model

e Network of identical nodes, with message ¢

e Each knows only its neighbours

. Distributed algorithms — p.3/16

Asynchronous distributed model

e Network of identical nodes, with message ¢

e Each knows only its neighbours

e Each performs the same subalgorithm

. Distributed algorithms — p.3/16

Asynchronous distributed model

e Network of identical nodes, with message ¢
e Each knows only its neighbours
e Each performs the same subalgorithm

e Each runs asynchronously wrt neighbours

. Distributed algorithms — p.3/16

Asynchronous distributed model

e Network of identical nodes, with message ¢
e Each knows only its neighbours

e Each performs the same subalgorithm

e Each runs asynchronously wrt neighbours

e J a finite set of pre-specified messages

. Distributed algorithms — p.3/16

Asynchronous distributed model

e Network of identical nodes, with message ¢
e Each knows only its neighbours

e Each performs the same subalgorithm

e Each runs asynchronously wrt neighbours
e J a finite set of pre-specified messages

 Indefinite delay before reply to message

. Distributed algorithms — p.3/16

Cooperation of nodes

Required: to perform some useful global actions:

l Distributed algorithms — p.4/16

Cooperation of nodes

Required: to perform some useful global actions:
e Reboot system

l Distributed algorithms — p.4/16

Cooperation of nodes

Required: to perform some useful global actions:
e Reboot system

e Detect node failures

. Distributed algorithms — p.4/16

Cooperation of nodes

)

Required: to perform some useful global actions:
e Reboot system

e Detect node failures

e Count total number of nodes

. Distributed algorithms — p.4/16

Cooperation of nodes

)

Required: to perform some useful global actions:
e Reboot system

e Detect node failures

e Count total number of nodes

e Name nodes and elect leader

. Distributed algorithms — p.4/16

Cooperation of nodes

)

Required: to perform some useful global actions:
e Reboot system

e Detect node failures

e Count total number of nodes
e Name nodes and elect leader

e Build spanning trees

. Distributed algorithms — p.4/16

Cooperation of nodes

)

Required: to perform some useful global actions:
e Reboot system

e Detect node failures

e Count total number of nodes
« Name nodes and elect leader
e Build spanning trees

e Find shortest paths

. Distributed algorithms — p.4/16

Cooperation of nodes

)

Required: to perform some useful global actions:
e Reboot system

e Detect node failures

e Count total number of nodes
« Name nodes and elect leader
e Build spanning trees

e Find shortest paths

 Compute and optimize network flows

. Distributed algorithms — p.4/16

Simulating an ADA on one processor

)

In decreasing order of weight:

e UNIX processes

e kernel threads

 threads in python, java etc.

e Other tricks

. Distributed algorithms — p.5/16

Python threads

| nport threading
cl ass Node:

def 1 nit(links):
nessage_queue=|[]

7.
def run():
while 1:

Ho.

def send(target):
#oo..

def receive(source):
#o.o..

nodes=[Node([2, 3]), Node([3]), Node([1])]

for node in nodes:
Thread(node. run).start ()

Distributed algorithms — p.6/16

Counting all nodes

All nodes asleep except 0, who Is awake and
sends to all neighbours

* If receiver awake: return ‘reject’

e If recelver asleep:

« wake up and relay message to neighbours
 return number of nodes from relay replies

» receiver returns sum+-1 to requester

. Distributed algorithms — p.7/16

Shortest path routing to node O

Asynchronous Bellman-Ford algorithm:

x(1) min x(j) + d(j)

j € neighbours of node 1

where:

e x(1) IS node i's current estimate of the
shortest path to node O

e d(j) Is the distance to node j (one hop)

Termination?

. Distributed algorithms — p.8/16

Building a spanning tree

Root node has weight 1

while 1:
e node sends its weight to neighbours

e If recelver is unweighted, adopt sender’s
weight+1

 else If recelver’s weight > sender’s weight+-1

* receiver adopts new parent

. Distributed algorithms — p.9/16

Layering

sorting, flows, ...
routing

reboot; failure detection
adjacency

I Distributed algorithms — p.10/16

Electrical circuits 1

)

e Digraph G with r, the resistance of edge k

* Problem 1: translate graph topology (known
only locally) to circuit equations

 Problem 2: solve these equations

* Apply Kirchhoff’s current law (KCL),
Kirchhoff’s voltage law (KVL), and Ohm’s Law
(QL) to circult

e Let v be the voltage vector and i the current
vector (in edge space)

Distributed algorithms — p.11/16

Electrical circuits 2

)

e A IS the adjacency matrix and D Is the degree
matrix

e Find incidence matrix B from BB' =D — A
Then KCL I1s Bi =0

e Build a spanning tree T. Edges in T are
branches, other edges are chords. Each
chord has a fundamental cycle (FC)

e C: matrix with one column for each edge, with
elements being the coefficients of the
corresponding FC Iin the edge space

e Then KVL is CTv = 0

e OL IS v = 41Tk

Distributed algorithms — p.12/16

The solution!

)

e 1 = Yv, where Y Is the conductance matrix
e Y =—CC™R R =diag(r1,72,...)

« C™Ris the weighted Moore-Penrose
pseudoinverse of C with weight R. If

R = WTW, then C*R = (WC)tWT

| have developed an algorithm for incremental

computation of C*R, which can be applied as
the columns of C are found by remote nodes

Distributed algorithms — p.13/16

Example

@ _ _

010 0
o NEEEEE
- : 010 1
0110

” 1 0 0 0]

o 1 1 0 -1

L0 =1 0 0 -1 1
0 -1 1 0

4 nodes 4 links

Distributed algorithms — p.14/16

el
1 Ohm
| C =

2

e?2
1 Ohm

e4. p—
1 Ohm

€3 —

1 Ohm Y

4 nodes 4 links

c O© O O

Example cotd

C O O O
o O O O
o O O O

0 0 0
-1/3 —-1/3 —-1/3
-1/3 —-1/3 —-1/3
-1/3 —-1/3 —-1/3

Distributed algorithms — p.15/16

References

N Lynch Distributed algorithms, Morgan
Kauffman 1996

D P Bertsekas & J N Tsitsiklis Parallel and
distributed computation, Athena Scientific
1997

* B Bollobas Modern graph theory, Springer
1998

tantal um / hone/ kbri ggs/ian/ Tal k/ di stri b-al gs-teratal k. tex

Distributed algorithms — p.16/16

	Outline
	Asynchronous distributed model
	Cooperation of nodes
	Simulating an ADA on one processor
	Python threads
	Counting all nodes
	Shortest path routing to node 0
	Building a spanning tree
	Layering
	Electrical circuits 1
	Electrical circuits 2
	The solution!
	Example
	Example cotd
	References

