
Distributed algorithms
Keith Briggs

Keith.Briggs@bt.com

more.btexact.com/people/briggsk2/

2002 October 24 1415

TYPESET IN LATEX2E ON A LINUX SYSTEM

Distributed algorithms – p.1/16



Outline

� Asynchronous distributed algorithms (ADAs)

� Simulation techniques

� Some examples

Theme: atheism

Distributed algorithms – p.2/16



Outline

� Asynchronous distributed algorithms (ADAs)

� Simulation techniques

� Some examples

Theme: atheism

Distributed algorithms – p.2/16



Asynchronous distributed model

� Network of identical nodes, with message q

Each knows only its neighbours

Each performs the same subalgorithm

Each runs asynchronously wrt neighbours

a finite set of pre-specified messages

Indefinite delay before reply to message

Distributed algorithms – p.3/16



Asynchronous distributed model

� Network of identical nodes, with message q

� Each knows only its neighbours

Each performs the same subalgorithm

Each runs asynchronously wrt neighbours

a finite set of pre-specified messages

Indefinite delay before reply to message

Distributed algorithms – p.3/16



Asynchronous distributed model

� Network of identical nodes, with message q

� Each knows only its neighbours

� Each performs the same subalgorithm

Each runs asynchronously wrt neighbours

a finite set of pre-specified messages

Indefinite delay before reply to message

Distributed algorithms – p.3/16



Asynchronous distributed model

� Network of identical nodes, with message q

� Each knows only its neighbours

� Each performs the same subalgorithm

� Each runs asynchronously wrt neighbours

a finite set of pre-specified messages

Indefinite delay before reply to message

Distributed algorithms – p.3/16



Asynchronous distributed model

� Network of identical nodes, with message q

� Each knows only its neighbours

� Each performs the same subalgorithm

� Each runs asynchronously wrt neighbours

� �

a finite set of pre-specified messages

Indefinite delay before reply to message

Distributed algorithms – p.3/16



Asynchronous distributed model

� Network of identical nodes, with message q

� Each knows only its neighbours

� Each performs the same subalgorithm

� Each runs asynchronously wrt neighbours

� �

a finite set of pre-specified messages

� Indefinite delay before reply to message

Distributed algorithms – p.3/16



Cooperation of nodes

Required: to perform some useful global actions:

Reboot system

Detect node failures

Count total number of nodes

Name nodes and elect leader

Build spanning trees

Find shortest paths

Compute and optimize network flows

Distributed algorithms – p.4/16



Cooperation of nodes

Required: to perform some useful global actions:

� Reboot system

Detect node failures

Count total number of nodes

Name nodes and elect leader

Build spanning trees

Find shortest paths

Compute and optimize network flows

Distributed algorithms – p.4/16



Cooperation of nodes

Required: to perform some useful global actions:

� Reboot system

� Detect node failures

Count total number of nodes

Name nodes and elect leader

Build spanning trees

Find shortest paths

Compute and optimize network flows

Distributed algorithms – p.4/16



Cooperation of nodes

Required: to perform some useful global actions:

� Reboot system

� Detect node failures

� Count total number of nodes

Name nodes and elect leader

Build spanning trees

Find shortest paths

Compute and optimize network flows

Distributed algorithms – p.4/16



Cooperation of nodes

Required: to perform some useful global actions:

� Reboot system

� Detect node failures

� Count total number of nodes

� Name nodes and elect leader

Build spanning trees

Find shortest paths

Compute and optimize network flows

Distributed algorithms – p.4/16



Cooperation of nodes

Required: to perform some useful global actions:

� Reboot system

� Detect node failures

� Count total number of nodes

� Name nodes and elect leader

� Build spanning trees

Find shortest paths

Compute and optimize network flows

Distributed algorithms – p.4/16



Cooperation of nodes

Required: to perform some useful global actions:

� Reboot system

� Detect node failures

� Count total number of nodes

� Name nodes and elect leader

� Build spanning trees

� Find shortest paths

Compute and optimize network flows

Distributed algorithms – p.4/16



Cooperation of nodes

Required: to perform some useful global actions:

� Reboot system

� Detect node failures

� Count total number of nodes

� Name nodes and elect leader

� Build spanning trees

� Find shortest paths

� Compute and optimize network flows

Distributed algorithms – p.4/16



Simulating an ADA on one processor

In decreasing order of weight:

� unix processes

� kernel threads

� threads in python, java etc.

� other tricks

Distributed algorithms – p.5/16



Python threads

import threading

class Node:

   def init(links):
     message_queue=[]
     # ...

   def run():
     while 1:
       # ...

   def send(target):
     # ...

   def receive(source):
     # ...

nodes=[Node([2,3]),Node([3]),Node([1])]

for node in nodes:
  Thread(node.run).start()

Distributed algorithms – p.6/16



Counting all nodes

All nodes asleep except 0, who is awake and
sends to all neighbours

� if receiver awake: return ‘reject’

� if receiver asleep:

� wake up and relay message to neighbours

� return number of nodes from relay replies

� receiver returns sum

�

to requester

Distributed algorithms – p.7/16



Shortest path routing to node 0

Asynchronous Bellman-Ford algorithm:

� �� �

min� � neighbours of node

	
� �
 � � � 
 �

where:

� � �� �

is node

�

’s current estimate of the
shortest path to node 0

� � �
 �

is the distance to node




(one hop)

Termination?

Distributed algorithms – p.8/16



Building a spanning tree

Root node has weight 1

while 1:

� node sends its weight to neighbours

� if receiver is unweighted, adopt sender’s
weight+1

� else if receiver’s weight � sender’s weight

�

� receiver adopts new parent

Distributed algorithms – p.9/16



Layering

sorting, flows, 
 
 


routing
counting; spanning tree
reboot; failure detection

adjacency

Distributed algorithms – p.10/16



Electrical circuits 1

� Digraph

�

with ��� the resistance of edge
�

� Problem 1: translate graph topology (known
only locally) to circuit equations

� Problem 2: solve these equations

� Apply Kirchhoff’s current law (KCL),
Kirchhoff’s voltage law (KVL), and Ohm’s Law
( L) to circuit

� Let � be the voltage vector and

�

the current
vector (in edge space)

Distributed algorithms – p.11/16



Electrical circuits 2

� is the adjacency matrix and is the degree
matrix

� Find incidence matrix

�

from
� �T � �

Then KCL is

�� � �

� Build a spanning tree

�

. Edges in

�

are
branches, other edges are chords. Each
chord has a fundamental cycle (FC)

� �

: matrix with one column for each edge, with
elements being the coefficients of the
corresponding FC in the edge space

� Then KVL is

�T � � �

� L is � � � � � ��

Distributed algorithms – p.12/16



The solution!

� � � � �, where

�

is the conductance matrix

� � � �
� � � �

,

� � diag

� ���! ��"  
 
 

�

� � � �

is the weighted Moore-Penrose
pseudoinverse of

�

with weight

�

. If

� � T , then

� � �

� � � � �

T

# �

� I have developed an algorithm for incremental
computation of

� � �

, which can be applied as
the columns of

�

are found by remote nodes

Distributed algorithms – p.13/16



Example

4 nodes  4 links

1

2

e1 
1 Ohm

4

e2 
1 Ohm

3

e4 
1 Ohm

e3 
1 Ohm

�
$

$
$

� � � �

� � � �

� � � �

� � � �
%

%
%

� �
$

$
$

� � � �

�
� � �

�
�

� �

�
� �

�

�
� � �

%
%

%

Distributed algorithms – p.14/16



Example cotd

4 nodes  4 links

1

2

e1 
1 Ohm

4

e2 
1 Ohm

3

e4 
1 Ohm

e3 
1 Ohm

� �
$

$
$

� � � �

� � � �

� � � �

� � � �
%

%
%

� �

& & & &

& ' ( )* ' ( )* ' ( )*

& ' ( )* ' ( )* ' ( )*

& ' ( )* ' ( )* ' ( )*

Distributed algorithms – p.15/16



References

� N Lynch Distributed algorithms, Morgan
Kauffman 1996

� D P Bertsekas & J N Tsitsiklis Parallel and
distributed computation, Athena Scientific
1997

� B Bollobás Modern graph theory, Springer
1998

tantalum:/home/kbriggs/ian/Talk/distrib-algs-teratalk.tex

Distributed algorithms – p.16/16


	Outline
	Asynchronous distributed model
	Cooperation of nodes
	Simulating an ADA on one processor
	Python threads
	Counting all nodes
	Shortest path routing to node 0
	Building a spanning tree
	Layering
	Electrical circuits 1
	Electrical circuits 2
	The solution!
	Example
	Example cotd
	References

