Exponential random graphs

Keith Briggs

Keith.Briggs@bt.com http://keithbriggs.info

MoN4 QMUL 2005 Jul 22 1215

corrected version 2005 July 25 16:18

<code>erg-2005jul22.tex</code> typeset 2005 July 25 16:18 in <code>pdfIATEX</code> on a linux system

Exponential random graphs 1 of 18

Shi Zhou and Raúl Mondragón

- ★ Accurately modeling the internet topology Phys. Rev. E 70 066108 (2004)
- ★ Network parameters:
 - number of nodes, humber of links. average degree, exponent of power law, hich-club connectivity, maximum degree, degree distribution, characteristic path length, average triangle coefficient, maximum triangle coefficient, average quadrangle coefficient, maximum quadrangle coefficient, average k_{mn}, average betweenness, maximum betweenness...
 - ▷ girth, spectrum, . . .

Motivation

- * we use many random graph models in network applications...
- \star but rarely specify the statistical ensemble precisely
- \star so even the averages we compute are suspect
- ★ and even the famous Barabási-Albert scale-free model has known problems

we need a unified, rigorous framework

★ related ideas in earlier literature:

- Markov random fields
- $\triangleright p^*$ models of social networks
- Ising-type models in physics
- agricultural field trials
- image processing
- ▷ ...

Dependency graphs (Frank, Strauss, Besag, ...)

- ★ consider a random vector $X = (X_1, X_2, \ldots, X_m)$
- ★ $P(x) = \exp(Q(x)) / \sum \exp Q(x) \Leftrightarrow Q(x) = \log P(x) + \text{const}$ ▷ only restriction $P(x) > 0 \quad \forall x$
- ★ let D be the *dependency graph* of X; i.e. $i \sim j \Leftrightarrow x_i$ not independent of x_j
 - \triangleright e.g. all x_i independent: empty graph
 - e.g. Markov chain: line graph
 - e.g. multivariate Gaussian: complete graph (generically)
- \star inclusion-exclusion principle $Q(x) = \sum_{s \subseteq \{1,2,...,m\}} \lambda_s(x_s)$
 - ▷ $x_s \equiv \text{ components of } x \text{ corresponding to elements of } s$ ▷ $\Pr[\cap_i A_i] = \sum_i \Pr[A_i] - \sum_{i < j} \Pr[A_i \cup A_j] + \dots$

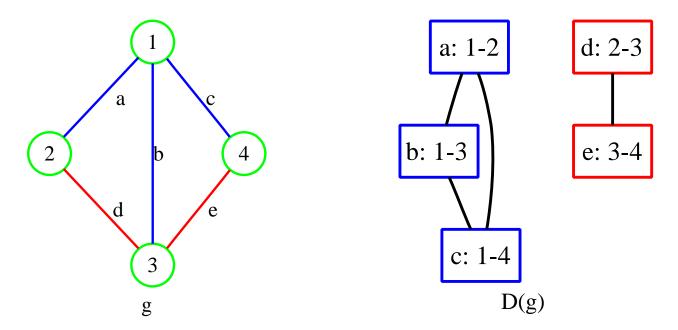
★ Hammersley-Clifford theorem: $\lambda_s \equiv 0$ unless s is a clique of D

▶ a clique is a complete subgraph

Markov graphs

- \star to apply to a graph g with edge dependencies, let X be the edge indicator functions \blacksquare
- ★ this defines the dependency graph D(g) of g: D(g) contains and edge (i, j) if X_i and X_j $(i \neq j)$ are dependent
- \star definition: g is Markov if D(g) contains no edge between edges which are disjoint in E(g)
- ★ in other words, edges can only 'interact' if they share a common end-point

Markov graph example (n = 4, m = 5)



 $\star \text{ cliques: } \{\{a\}, \{b\}, \{c\}, \{c\}, \{d\}, \{e\}, \{a, b\}, \{b, c\}, \{a, c\}, \{d, e\}, \{a, b, c\}\} \blacksquare$

thus

$$Q(x) = \lambda_a(x_a) + \lambda_b(x_b) + \lambda_c(x_c) + \lambda_d(x_d) + \lambda_e(x_e)$$

$$+ \lambda_{ab}(x_a, x_b) + \lambda_{bc}(x_b, x_c) + \lambda_{ac}(x_a, x_c) + \lambda_{de}(x_d, x_e)$$

$$+ \lambda_{abc}(x_a, x_b, x_c)$$

 \star

Homogeneous Markov graphs 1

- ★ if we require all isomorphic graphs to have the same probability, then a further simplification results:
- \star let t(g) be the number of triangles in g
- \star let $s_k(g)$ be the number of k-stars in g
- \star then P(g) can only depend on t(g) and $s_k(g)$, in the form

$$P_{\beta}(g) = \frac{1}{Z(\beta)} \exp\left[\beta_0 t(g) + \sum_{k=1}^{n-1} \beta_k s_k(g)\right]$$

where β_i are fixed parameters

* here
$$Z(\beta) = \sum_{g} \exp\left[\beta_0 t(g) + \sum_{k=1}^{n-1} \beta_k s_k(g)\right]$$

Homogeneous Markov graphs 2

★ alternatively, we may use d_j , the number of nodes of degree j ($s_k(g) \equiv \sum_{j \ge k} {j \choose k} d_j(g)$)

 \star and let $\theta_k(g) \equiv \sum_{k \leqslant j} {j \choose k} \beta_k$; then

$$P_{\theta}(g) = \frac{1}{Z(\theta)} \exp\left[\theta_0 t(g) + \sum_{j=1}^{n-1} \theta_j d_j(g)\right] \blacksquare$$

- \star in other words, the Hamiltonian can only be a linear function of the number of triangles and k-stars
- ★ note: if A if the adjacency matrix of g, then $m(g) = d_1(g) = tr(A^2)/2$ is the number of edges and $t(g) = tr(A^3)/6$

Exponential random graphs

- \star fix a number of nodes n
- \star consider the set G(n) of all graphs on n nodes
- \star we will assign to each $g \in G(n)$ a probability P(g)
- ★ let $x = \{x_1, x_2, ...\}$ be a set of functions on G(n) representing properties we are interested in, for example
 - > x₁(g)=number of edges
 > x₂(g)=number of nodes of degree 3
 > x₃(g)=number of triangles

 \star we then assign the probabilities P by

$$P_{\theta}(g) = \frac{1}{Z(\theta)} \exp(\theta_1 x_1 + \theta_2 x_2 + \dots)$$

where $Z(\theta) = \sum_{g \in G(n)} \exp(\theta_1 x_1 + \theta_2 x_2 + \dots)$

Statistical mechanics

- ★ Hamiltonian: $H(\theta, g) = \sum_i \theta_i x_i(g)$
- * probability of g: $P_{\theta}(g) = \exp(H(\theta, g))/Z(\theta)$
- \star partition function: $Z(\theta) = \sum_g \exp\left(H(\theta,g)\right)$
- \star entropy $S(\theta) = -\sum_g P_{\theta}(g) \log(P_{\theta}(g))$
- $\bigstar~S$ is maximized by our choice of P
- ★ free energy: $F(\theta) = \log(Z(\theta))$
- $\star \mathsf{E}[x_i] = \frac{\mathsf{d}F(\theta)}{\mathsf{d}\theta_i}$

Exactly soluble example - Bernoulli model $G\{n, p\}$

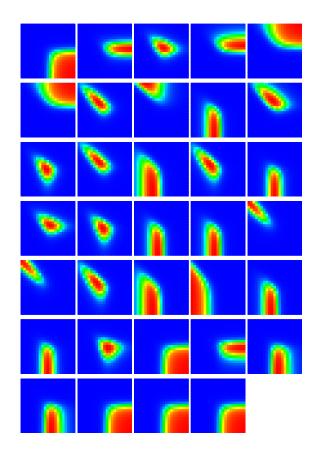
- $\star~g \in G\{n,p\}$ has n nodes and each possible edge appears independently with fixed probability p
- \bigstar let x(g) = number of edges in graph g
- $\star \ H(\theta,g) = \theta \ m(g)$
- $\star Z(\theta) = (1 + \exp(-\theta))^{\binom{n}{2}}$
- $\star p = 1/(1 \! + \! \exp(\theta))$
- $\star F(\theta) = \binom{n}{2} \log(1 + \exp(-\theta)) \mathbf{I}$
- * which gives $P_p(g) = {n \choose m(g)} p^{m(g)} (1-p)^{{n \choose 2} m(g)}$ as expected

$$\star \mathsf{E}[x] = m = \binom{n}{2}p$$

Example - exact likelihood for all 5-node graphs

Likelihood of parameters, given a graph: $L(\theta|g) \propto P_{\theta}(g)$. (Loglikelihood: $l(\theta|g) \equiv \log P_{\theta}(g) + \text{const.}$)

Each figure shows the likelihood for one of the 34 graphs, the parameters corresponding to the number of nodes of degrees one and two. i.e. $H_{\theta}(g) = \theta_1 d_1(g) + \theta_2 d_2(g)$



Metropolis simulation

- \star works by defining a random walk in G which has equilibrium distribution equal to our desired P
- ★ typically we choose a pair of nodes, and then flip its state depending on whether the flip is energetically favourable

(1) choose a proposal dyad $i, j \in N(g)$ uniformly at random

```
(2) compute the energy change \delta H that would occur if the dyad (i, j) were flipped
```

```
(3) if \delta H or u < \exp(\delta H), u \sim U(0, 1), then accept the proposal; i.e. flip the edge
```

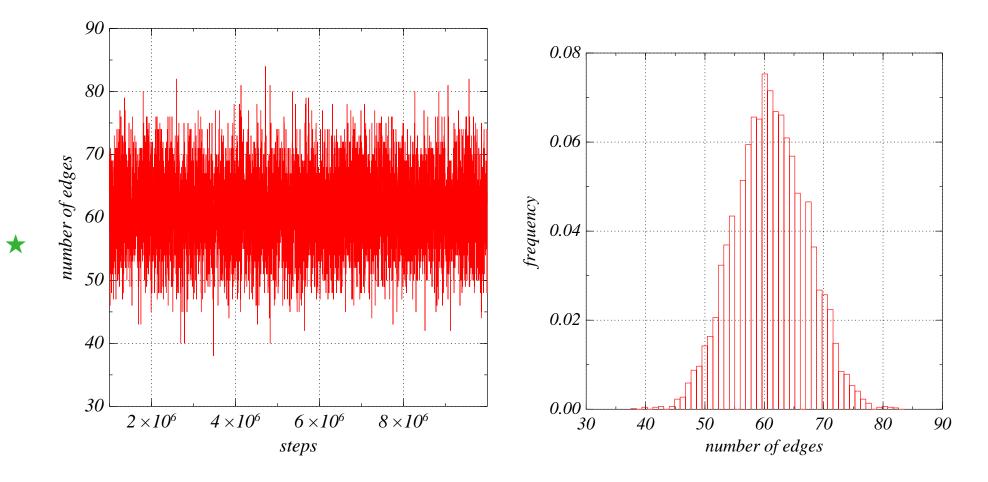
```
(4) go to (1)
```

* estimate loglikelihood by (where x is the vector of graph statistics, θ_{ref} a reference value of graph parameters (hopefully close to the true ones) and x_{data} the statistics from the data):

$$l(\theta) - l(\theta_{\mathsf{ref}}) \approx -\log \left\langle \exp[(l(\theta) - l(\theta_{\mathsf{ref}})) \cdot (x(t) - x_{\mathsf{data}})] \right\rangle$$

Metropolis simulation example

 \star 18 nodes; graph shows fluctuations in m(g)



Metropolised independence sampling (MIS) 1

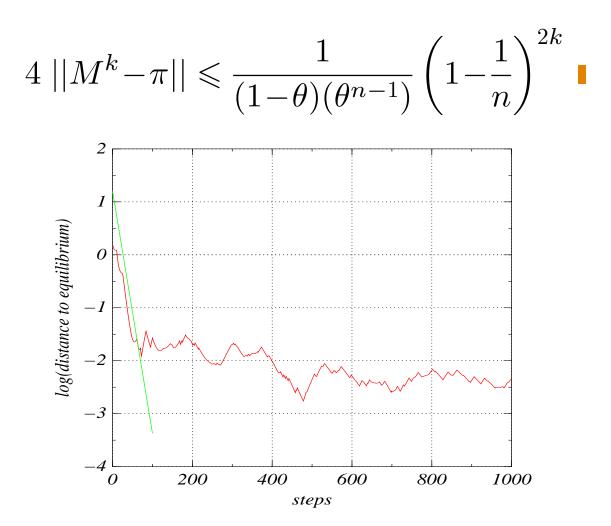
- ★ consider the target distribution $\pi_{\theta}(j) = \exp(j\log\theta)/Z(\theta)$, $Z(\theta) \equiv (1-\theta^n)/(1-\theta)$ on the set $\{0, 1, 2, \dots, n-1\}$
- ★ an MIS scheme is
 - (0) start at x = n-1
 - (1) choose a proposal $y \in X$ uniformly at random
 - (2) if y < x or $u < \theta^{y-x}$, $u \sim U(0, 1)$, then accept the proposal; i.e. set x = y

(3) go to (1)

 \star note that this scheme ignores the current position x and assumes no knowledge of $\pi.$ In general, we can do better

Metropolised independence sampling 2

★ for this example, it can be proven [Diaconis & Saloff-Coste 1998] that



What next?

- ★ directed graphs ■
- ★ perturbation theory (around Bernoulli model?)
- ★ more rapidly converging sampling schemes
- parameter estimation for real examples by maximum likelihood (e.g. internet AS graph)

* . . . ?

Some references (amongst many)

J Besag Spatial interaction and the statistical analysis of lattice systems J Roy Stat Soc **B36**, 192-236 (1974)

O Frank & D Strauss *Markov graphs* J Am Stat Ass 81, 832-842 (1986)

P Diaconis & L Saloff-Coste What do we know about the Metropolis algorithm? J Comp Sys Sci 57, 20-36 (1998)

Z Burda & J Correia & A Krzywicki Statistical ensemble of scale-free random graphs http://xxx.soton.ac.uk/abs/cond-mat/0104155

J Berg & M Lässig Correlated random networks http://xxx.soton.ac.uk/abs/cond-mat/0205589

J Park & M Newman The statistical mechanics of networks http://xxx.soton.ac.uk/abs/cond-mat/0405566

K M Briggs graphlib-1.0
http://keithbriggs.info/graphlib.html