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Shi Zhou and Raúl Mondragón

F Accurately modeling the internet topology
Phys. Rev. E 70 066108 (2004)

F Network parameters:
. number of nodes, number of links. average degree, exponent of power law,

rich-club connectivity, maximum degree, degree distribution,
characteristic path length, average triangle coefficient,
maximum triangle coefficient, average quadrangle coefficient,
maximum quadrangle coefficient, average kmn, average betweenness,
maximum betweenness. . .

. girth, spectrum, . . .
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Motivation

F we use many random graph models in network
applications. . .

F but rarely specify the statistical ensemble precisely

F so even the averages we compute are suspect

F and even the famous Barabási-Albert scale-free model has
known problems

we need a unified, rigorous framework

F related ideas in earlier literature:
. Markov random fields
. p∗ models of social networks
. Ising-type models in physics
. agricultural field trials
. image processing
. . . .
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Dependency graphs (Frank, Strauss, Besag, . . . )

F consider a random vector X = (X1, X2, . . . , Xm)

F P (x) = exp(Q(x))/
∑

expQ(x) ⇔ Q(x) = log P (x)+const
. only restriction P (x) > 0 ∀x

F let D be the dependency graph of X; i.e. i ∼ j ⇔ xi not
independent of xj

. e.g. all xi independent: empty graph

. e.g. Markov chain: line graph

. e.g. multivariate Gaussian: complete graph (generically)

F inclusion-exclusion principle Q(x) =
∑

s⊆{1,2,...,m} λs(xs)

. xs ≡ components of x corresponding to elements of s

. Pr [∩iAi] =
P

i Pr [Ai]−
P

i<j Pr [Ai∪Aj]+. . .

F Hammersley-Clifford theorem: λs ≡ 0 unless s is a clique of D
. a clique is a complete subgraph
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Markov graphs

F to apply to a graph g with edge dependencies, let X be the
edge indicator functions

F this defines the dependency graph D(g) of g: D(g) contains
and edge (i, j) if Xi and Xj (i 6= j) are dependent

F definition: g is Markov if D(g) contains no edge between
edges which are disjoint in E(g)

F in other words, edges can only ‘interact’ if they share a
common end-point

Keith Briggs Exponential random graphs 5 of 18



Markov graph example (n = 4,m = 5)

g

1

2

a

3

b 4

c

d e

D(g)

a: 1-2

b: 1-3

c: 1-4

d: 2-3

e: 3-4

F cliques: {{a}, {b}, {c}, {d}, {e}, {a, b}, {b, c}, {a, c}, {d, e}, {a, b, c}}

F thus
Q(x) = λa(xa)+λb(xb)+λc(xc)+λd(xd)+λe(xe)

+ λab(xa, xb)+λbc(xb, xc)+λac(xa, xc)+λde(xd, xe)
+ λabc(xa, xb, xc)

Keith Briggs Exponential random graphs 6 of 18



Homogeneous Markov graphs 1

F if we require all isomorphic graphs to have the same proba-
bility, then a further simplification results:

F let t(g) be the number of triangles in g

F let sk(g) be the number of k-stars in g

F then P (g) can only depend on t(g) and sk(g), in the form

Pβ(g) =
1

Z(β)
exp

[
β0t(g)+

n−1∑
k=1

βk sk(g)

]

where βi are fixed parameters

F here Z(β) =
∑

g exp
[
β0t(g)+

∑n−1
k=1 βk sk(g)

]

Keith Briggs Exponential random graphs 7 of 18



Homogeneous Markov graphs 2

F alternatively, we may use dj, the number of nodes of degree
j (sk(g) ≡

∑
j>k

(
j
k

)
dj(g))

F and let θk(g) ≡
∑

k6j

(
j
k

)
βk; then

Pθ(g) =
1

Z(θ)
exp

θ0t(g)+
n−1∑
j=1

θj dj(g)


F in other words, the Hamiltonian can only be a linear function

of the number of triangles and k-stars

F note: if A if the adjacency matrix of g, then m(g) = d1(g) =
tr

(
A2

)
/2 is the number of edges and t(g) = tr

(
A3

)
/6
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Exponential random graphs

F fix a number of nodes n

F consider the set G(n) of all graphs on n nodes

F we will assign to each g ∈ G(n) a probability P (g)

F let x = {x1, x2, . . . } be a set of functions on G(n) representing
properties we are interested in, for example

. x1(g)=number of edges

. x2(g)=number of nodes of degree 3

. x3(g)=number of triangles

F we then assign the probabilities P by

Pθ(g) =
1

Z(θ)
exp (θ1x1+θ2x2+. . . )

where Z(θ) =
∑

g∈G(n) exp (θ1x1+θ2x2+. . . )
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Statistical mechanics

F Hamiltonian: H(θ, g) =
∑

i θi xi(g)

F probability of g: Pθ(g) = exp (H(θ, g))/Z(θ)

F partition function: Z(θ) =
∑

g exp (H(θ, g))

F entropy S(θ) = −
∑

g Pθ(g) log(Pθ(g))

F S is maximized by our choice of P

F free energy: F (θ) = log(Z(θ))

F E [xi] = dF (θ)
dθi
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Exactly soluble example - Bernoulli model G{n, p}

F g ∈ G{n, p} has n nodes and each possible edge appears
independently with fixed probability p

F let x(g) = number of edges in graph g

F H(θ, g) = θ m(g)

F Z(θ) = (1+exp(−θ))(
n
2)

F p = 1/(1+exp(θ))

F F (θ) =
(
n
2

)
log(1+exp(−θ))

F which gives Pp(g) =
(

n
m(g)

)
pm(g)(1−p)(

n
2)−m(g) as expected

F E [x] = m =
(
n
2

)
p
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Example - exact likelihood for all 5-node graphs

Likelihood of parameters, given a

graph: L(θ|g) ∝ Pθ(g). (Loglikeli-

hood: l(θ|g) ≡ log Pθ(g)+const.)

Each figure shows the likelihood for

one of the 34 graphs, the param-

eters corresponding to the number

of nodes of degrees one and two.

i.e. Hθ(g) = θ1d1(g)+θ2d2(g)
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Metropolis simulation

F works by defining a random walk in G which has equilibrium
distribution equal to our desired P

F typically we choose a pair of nodes, and then flip its state
depending on whether the flip is energetically favourable

(1) choose a proposal dyad i, j ∈ N(g) uniformly at random

(2) compute the energy change δH that would occur if the
dyad (i, j) were flipped

(3) if δH or u < exp(δH), u ∼ U(0, 1), then accept the proposal;
i.e. flip the edge

(4) go to (1)

F estimate loglikelihood by (where x is the vector of graph
statistics, θref a reference value of graph parameters (hopefully
close to the true ones) and xdata the statistics from the data):

l(θ)−l(θref) ≈ − log 〈exp[(l(θ)−l(θref))·(x(t)−xdata)]〉
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Metropolis simulation example

F 18 nodes; graph shows fluctuations in m(g)

F
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Metropolised independence sampling (MIS) 1

F consider the target distribution πθ(j) = exp(j log θ)/Z(θ),
Z(θ) ≡ (1−θn)/(1−θ) on the set {0, 1, 2, . . . , n−1}

F an MIS scheme is
(0) start at x = n−1

(1) choose a proposal y ∈ X uniformly at random

(2) if y < x or u < θy−x, u ∼ U(0, 1), then accept the proposal;
i.e. set x = y

(3) go to (1)

F note that this scheme ignores the current position x and
assumes no knowledge of π. In general, we can do better
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Metropolised independence sampling 2

F for this example, it can be proven [Diaconis & Saloff-Coste
1998] that

4 ||Mk−π|| 6 1
(1−θ)(θn−1)

(
1− 1

n

)2k
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What next?

F directed graphs

F perturbation theory (around Bernoulli model?)

F more rapidly converging sampling schemes

F parameter estimation for real examples by maximum likelihood
(e.g. internet AS graph)

F . . . ?
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Some references (amongst many)

J Besag Spatial interaction and the statistical analysis of lattice
systems J Roy Stat Soc B36, 192-236 (1974)

O Frank & D Strauss Markov graphs J Am Stat Ass 81, 832-842
(1986)

P Diaconis & L Saloff-Coste What do we know about the
Metropolis algorithm? J Comp Sys Sci 57, 20-36 (1998)

Z Burda & J Correia & A Krzywicki Statistical ensemble of
scale-free random graphs
http://xxx.soton.ac.uk/abs/cond-mat/0104155

J Berg & M Lässig Correlated random networks
http://xxx.soton.ac.uk/abs/cond-mat/0205589

J Park & M Newman The statistical mechanics of networks
http://xxx.soton.ac.uk/abs/cond-mat/0405566

K M Briggs graphlib-1.0
http://keithbriggs.info/graphlib.html
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