Graph eigenvalues and connectivity

Keith Briggs

Keith.Briggs@bt.com
http://research.btexact.com/teralab/keithbriggs.html

BT Exact

2003 July 071500

TYPESET 2003 July 8 9:13 in PDFLATEX On A LINUX SYSTEM

Adjacency matrix

Let Γ be an arbitrary graph with n nodes
Let A be the adjacency matrix of Γ
Example:

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Determining connectivity

Let B be the adjacency matrix with all zeroes replaced by ∞

- for $k=1, \ldots, n$
- for $i=1, \ldots, n$

$$
\begin{aligned}
& \text { - for } j=i+1, \ldots, n \\
& \quad \cdot b_{i j}=\min \left(b_{i k}+b_{k j}, b_{i j}\right)
\end{aligned}
$$

The graph is connected iff all elements $b_{i j}(i \neq j)$ are $<\infty$ We would like to use this for very large graphs, but it takes time $\mathcal{O}\left(n^{3}\right)$ and space $\mathcal{O}\left(n^{2}\right)$!

Graph eigenvalues

Let Γ be an arbitrary graph with n nodes
Let A be the adjacency matrix of Γ
Let Δ be the diagonal matrix with $\Delta_{i i}$ the degree of node i
Let $Q \equiv \Delta-A$ be the Laplacian matrix
Let J be the matrix of all ones
Then the number of spanning trees of Γ is $\kappa=\operatorname{det}(J+Q) / n^{2}$
Let the spectrum of Q be $0=\mu_{0} \leqslant \mu_{1} \leqslant \mu_{2} \leqslant \cdots \leqslant \mu_{n-1}$
Then we also have $n \kappa=\prod_{i=1}^{n-1} \mu_{i}$
Thus Γ is connected iff $\mu_{1}>0$

Example 1

$$
\begin{aligned}
& Q=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right] \\
& \operatorname{det}(J+Q)=16 \\
& \mu=[0,0.5858,2,3.4142] \\
& \kappa=1 \text { from determinant formula } \\
& \kappa=1 \text { from eigenvalue formula }
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& Q=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{array}\right] \\
& \operatorname{det}(J+Q)=0 \\
& \mu=[0,0,2,2] \\
& \kappa=0 \text { from determinant formula } \\
& \kappa=0 \text { from eigenvalue formula }
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& Q=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
-1 & 3 & -1 & -1 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \\
& \operatorname{det}(J+Q)=16 \\
& \mu=[0,1,1,4] \\
& \kappa=1 \text { from determinant formula } \\
& \kappa=1 \text { from eigenvalue formula }
\end{aligned}
$$

Example 4

$$
\begin{aligned}
& Q=\left[\begin{array}{rrrr}
2 & -1 & 0 & -1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right] \\
& \operatorname{det}(J+Q)=64 \\
& \mu=[0,2,2,4]
\end{aligned}
$$

$$
\kappa=4 \text { from determinant formula }
$$

$$
\kappa=4 \text { from eigenvalue formula }
$$

My new idea! (2003 July 02)

If $\mu_{1}>0$, the graph is connected, so we need to find only the two smallest eigenvalues, and bound μ_{1} away from zero

We can find the two smallest eigenvalues by an inverse $Q R$ iteration method: let there be n nodes, let Y_{0} by an $n \times 2$ matrix with a 2×2 identity matrix at the top, then iterate for $k=1,2,3, \ldots$

- $Q Z=Y_{k-1}$ (solve for Z)
- $Z_{k}=Y_{k} R_{k}$ ($Q R$ factorization)
this should work because:
- we can use a sparse representation for Q, and solve for Z with a sparse iterative technique [see references];
- the $Q R$ factorization will be very fast for a 2-column matrix thus, the element R_{22} will converge to the desired μ_{1}

Problems!

Q is singular. But we can instead use $Q^{\prime}=J+Q$, where J is a matrix of all ones. The eigenvalues of Q^{\prime} are $n, \mu_{1}, \mu_{2}, \ldots$, so we now have: G is connected iff Q^{\prime} is nonsingular

Equivalently, G is connected iff Q^{\prime} is positive definite.
Inverse QR now works, but probably better methods are available:

- Lanczos iteration (tridiagonalization)
- Arnoldi iteration (ARPACK++)
- SuperLU
the space requirement is now $\mathcal{O}(n)$
the time requirement is now $\mathcal{O}\left(n^{2}\right)$?
challenge:
what is the fastest way to determine whether Q^{\prime} is singular?

References

N. Biggs, Algebraic graph theory, CUP 1993
B. Bollobás, Modern graph theory, Springer-Verlag 2002
R. Diestel, Graph theory, Springer-Verlag 2000
sparse-blas: http://www.netlib.org/sparse-blas/index.html
sparse 1.3: http://www.netlib.org/sparse/index.html
other sparse codes: http://gams.nist.gov/serve.cgi/Class/
D2a4/

