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Adjacency matrix

Let Γ be an arbitrary graph with n nodes

Let A be the adjacency matrix of Γ

Example:

1

2

3 4

A =

 0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0
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Determining connectivity

Let B be the adjacency matrix with all zeroes replaced by ∞
• for k = 1, . . . , n

• for i = 1, . . . , n

• for j = i+1, . . . , n

• bij = min(bik+bkj, bij)

The graph is connected iff all elements bij (i 6= j) are < ∞

We would like to use this for very large graphs, but it takes
time O(n3) and space O(n2)!
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Graph eigenvalues

Let Γ be an arbitrary graph with n nodes

Let A be the adjacency matrix of Γ

Let ∆ be the diagonal matrix with ∆ii the degree of node i

Let Q ≡ ∆−A be the Laplacian matrix

Let J be the matrix of all ones

Then the number of spanning trees of Γ is κ = det (J+Q)/n2

Let the spectrum of Q be 0 = µ0 6 µ1 6 µ2 6 · · · 6 µn−1

Then we also have nκ =
∏n−1

i=1 µi

Thus Γ is connected iff µ1 > 0
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Example 1

1

2

3

4

Q =

 1 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1



det(J+Q) = 16

µ = [0, 0.5858, 2, 3.4142]

κ = 1 from determinant formula

κ = 1 from eigenvalue formula
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Example 2

1

2

3

4

Q =

 1 −1 0 0
−1 1 0 0

0 0 1 −1
0 0 −1 1



det(J+Q) = 0

µ = [0, 0, 2, 2]

κ = 0 from determinant formula

κ = 0 from eigenvalue formula
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Example 3

1

2

3 4

Q =

 1 −1 0 0
−1 3 −1 −1

0 −1 1 0
0 −1 0 1


det(J+Q) = 16

µ = [0, 1, 1, 4]

κ = 1 from determinant formula

κ = 1 from eigenvalue formula
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Example 4

1

2

4

3

Q =

 2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2


det(J+Q) = 64

µ = [0, 2, 2, 4]

κ = 4 from determinant formula

κ = 4 from eigenvalue formula
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My new idea! (2003 July 02)

If µ1 > 0, the graph is connected, so we need to find only the
two smallest eigenvalues, and bound µ1 away from zero

We can find the two smallest eigenvalues by an inverse QR
iteration method: let there be n nodes, let Y0 by an n×2
matrix with a 2×2 identity matrix at the top, then iterate for
k = 1, 2, 3, . . .

• QZ = Yk−1 (solve for Z)

• Zk = YkRk (QR factorization)

this should work because:
• we can use a sparse representation for Q, and solve for Z with a sparse iterative

technique [see references];

• the QR factorization will be very fast for a 2-column matrix

thus, the element R22 will converge to the desired µ1
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Problems!

Q is singular. But we can instead use Q′ = J+Q, where J is a
matrix of all ones. The eigenvalues of Q′ are n, µ1, µ2, . . . , so
we now have: G is connected iff Q′ is nonsingular

Equivalently, G is connected iff Q′ is positive definite.

Inverse QR now works, but probably better methods are avail-
able:

• Lanczos iteration (tridiagonalization)

• Arnoldi iteration (ARPACK++)

• SuperLU

the space requirement is now O(n)

the time requirement is now O(n2) ?

challenge:

what is the fastest way to determine whether Q′ is singular?
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sparse-blas: http://www.netlib.org/sparse-blas/index.html

sparse 1.3: http://www.netlib.org/sparse/index.html

other sparse codes: http://gams.nist.gov/serve.cgi/Class/
D2a4/
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