Graph eigenvalues and connectivity

Keith Briggs

Keith.Briggs@bt.com

http://research.btexact.com/teralab/keithbriggs.html

2003 July 07 1500

typeset 2003 July 8 $\ 9{:}13$ in PdFIATEX on a linux system

Graph eigenvalues and connectivity 1 of 11

Adjacency matrix

Let Γ be an arbitrary graph with n nodes Let A be the adjacency matrix of Γ Example:

Determining connectivity

Let B be the adjacency matrix with all zeroes replaced by ∞

• for
$$k = 1, ..., n$$

• for $i = 1, ..., n$
• for $j = i+1, ..., n$
• $b_{ij} = \min(b_{ik}+b_{kj}, b_{ij})$

The graph is connected iff all elements b_{ij} $(i \neq j)$ are $< \infty$

We would like to use this for very large graphs, but it takes time $\mathcal{O}(n^3)$ and space $\mathcal{O}(n^2)!$

Graph eigenvalues

Let Γ be an arbitrary graph with n nodes

Let A be the adjacency matrix of Γ

Let Δ be the diagonal matrix with Δ_{ii} the degree of node i

Let $Q \equiv \Delta - A$ be the Laplacian matrix

Let J be the matrix of all ones

Then the number of spanning trees of Γ is $\kappa = \det (J+Q)/n^2$

Let the spectrum of Q be $0 = \mu_0 \leq \mu_1 \leq \mu_2 \leq \cdots \leq \mu_{n-1}$

Then we also have $n\kappa = \prod_{i=1}^{n-1} \mu_i$

Thus Γ is connected iff $\mu_1 > 0$

$$Q = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

 $\det(J + Q) = 16$

$$\mu = [0, 0.5858, 2, 3.4142]$$

 $\kappa = 1$ from determinant formula $\kappa = 1$ from eigenvalue formula

$$det(J+Q) = 0$$

$$\mu = [0, 0, 2, 2]$$

$$\kappa = 0$$
 from determinant formula

$$\kappa = 0$$
 from eigenvalue formula

$$Q = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$
$$\det(J+Q) = 16$$
$$\mu = [0, 1, 1, 4]$$
$$\kappa = 1 \text{ from determinant formula}$$

 $\kappa = 1$ from eigenvalue formula

 $\kappa=4$ from eigenvalue formula

My new idea! (2003 July 02)

If $\mu_1 > 0$, the graph is connected, so we need to find only the two smallest eigenvalues, and bound μ_1 away from zero

We can find the two smallest eigenvalues by an inverse QR iteration method: let there be n nodes, let Y_0 by an $n \times 2$ matrix with a 2×2 identity matrix at the top, then iterate for $k = 1, 2, 3, \ldots$

- $QZ = Y_{k-1}$ (solve for Z)
- $Z_k = Y_k R_k$ (QR factorization)

this should work because:

- we can use a sparse representation for Q, and solve for Z with a sparse iterative technique [see references];
- the QR factorization will be very fast for a 2-column matrix

thus, the element R_{22} will converge to the desired μ_1

Problems!

Q is singular. But we can instead use Q' = J + Q, where J is a matrix of all ones. The eigenvalues of Q' are n, μ_1, μ_2, \ldots , so we now have: G is connected iff Q' is nonsingular

Equivalently, G is connected iff Q' is positive definite.

Inverse QR now works, but probably better methods are available:

- Lanczos iteration (tridiagonalization)
- Arnoldi iteration (ARPACK++)
- SuperLU

the space requirement is now $\mathcal{O}(n)$

the time requirement is now $\mathcal{O}(n^2)$? challenge:

what is the fastest way to determine whether Q' is singular?

References

N. Biggs, Algebraic graph theory, CUP 1993

- B. Bollobás, Modern graph theory, Springer-Verlag 2002
- R. Diestel, Graph theory, Springer-Verlag 2000

sparse-blas: http://www.netlib.org/sparse-blas/index.html

sparse 1.3: http://www.netlib.org/sparse/index.html

other sparse codes: http://gams.nist.gov/serve.cgi/Class/ D2a4/