## Some graph theory applications

to

## communications networks

Keith Briggs<br>Keith.Briggs@bt.com<br>http://keithbriggs.info

Computational Systems Biology Group, Sheffield - 2006 Nov 021100

## BT Research at Martlesham, Suffolk


> * Cambridge-Ipswich high-tech corridor
> * 2000 technologists
> * 15 companies
> * UCL, Univ of Essex

## Mathematics in telecoms

* graph theory - network models
* optimization of network topology
* information theory
* Markov chains \& queuing theory
* coding, compression, and cryptography
* packet protocols \& traffic characteristics
* asynchronous distributed algorithms
* caching and data distribution strategies
* optimization of dynamic processes on networks (typically convex but non-smooth)
* business modelling \& financial forecasting

夫 complex systems?

## Talk outline

* graph concepts and problems
* connectivity
* chromatic number and clique number
* channel allocation
$\star$ the challenge - to balance (exact) theory with (real) practice


## Graph concepts


$\star$ clique - a complete subgraph

* maximal clique - a clique that cannot be extended to a larger one
* lonely set - a pairwise disjoint set of nodes (stable set, independent set)
* colouring - an assignment of colours to nodes in which no neighbours have the same colour
* chromatic number $\chi$ - the number of colours in a colouring with a minimal number of colours
$\star$ loneliness $\alpha$ - the number of nodes in a largest lonely set
* clique number $\omega$ - the number of nodes in a largest maximal clique


## The Bernoulli random graph model $G\{n, p\}$

* let $G$ be a graph of $n$ nodes
$\star$ let $p=1-q$ be the probability that each possible edge exists
* edge events are independent
* let $P(n)$ be the probability that $G\{n, p\}$ is connected
* then $P(1)=1$ and $P(n)=1-\sum_{k=1}^{n-1}\binom{n-1}{k-1} P(k) q^{k(n-k)}$ for $n=2,3,4, \ldots$.

$$
\begin{aligned}
& P(1)=1 \\
& P(2)=1-q \\
& P(3)=(2 q+1)(q-1)^{2} \\
& P(4)=\left(6 q^{3}+6 q^{2}+3 q+1\right)(1-q)^{3} \\
& P(5)=\left(24 q^{6}+36 q^{5}+30 q^{4}+20 q^{3}+10 q^{2}+4 q+1\right)(q-1)^{4}
\end{aligned}
$$

$\star$ as $n \rightarrow \infty$, we have $P(n) \rightarrow 1-n q^{n-1}$.

## Probability of connectivity - the $G(n, m)$ model

* problem: compute the numbers of connected labelled graphs with $n$ nodes and $m=n-1, n, n+1, n+2, \ldots$ edges
* exponential generating function for all labelled graphs:

$$
g(w, z)=\sum_{n=0}^{\infty}(1+w)^{\binom{n}{2}} z^{n} / n!
$$

* i.e., the number of labelled graphs with $m$ edges and $n$ nodes is $\left[w^{m} z^{n}\right] g(w, z)$
* exponential generating function for all connected labelled graphs:

$$
\begin{aligned}
c(w, z) & =\log (g(w, z)) \\
& =z+w \frac{z^{2}}{2}+\left(3 w^{2}+w^{3}\right) \frac{z^{3}}{6}+\left(16 w^{3}+15 w^{4}+6 w^{5}+w^{6}\right) \frac{z^{4}}{4!}+\ldots
\end{aligned}
$$

## Probability of connectivity for $G(n, m)$

$$
\begin{aligned}
& \star \frac{P(n, n-1)}{2^{n} e^{2-n} n^{-1 / 2} \xi} \sim \frac{1}{2}-\frac{7}{8} n^{-1}+\frac{35}{192} n^{-2}+\frac{1127}{11520} n^{-3}+\frac{5189}{61440} n^{-4}+\frac{457915}{3096576} n^{-5}+ \\
& \frac{570281371}{1857945600} n^{-6}+\frac{291736667}{495452160} n^{-7}+O\left(n^{-8}\right) \\
& \triangleright \text { check: } n=10, \text { exact=0.1128460393, asymptotic=0.1128460359} \\
& \star \frac{P(n, n+0)}{2^{n} e^{2-n} \xi} \sim \frac{1}{4} \xi-\frac{7}{6} n^{-1 / 2}+\frac{1}{3} \xi n^{-1}-\frac{1051}{1080} n^{-3 / 2}+\frac{5}{9} \xi n^{-2}+O\left(n^{-3}\right) \\
& \triangleright \text { check: } n=10, \text { exact=0.276, asymptotic=0.319} \\
& \star \frac{P(n, n+1)}{2^{n} e^{2-n} n^{1 / 2} \xi} \sim \frac{5}{12}-\frac{7}{12} \xi n^{-1 / 2}+\frac{515}{144} n^{-1}-\frac{28}{9} \xi n^{-3 / 2}+\frac{788347}{51840} n^{-2}-\frac{308}{27} \xi n^{-5 / 2}+ \\
& O\left(n^{-3}\right) \\
& \therefore \text { check: } n=10, \text { exact=0.437, asymptotic=0.407 } \\
& \triangleright \text { check: } n=20, \text { exact=0.037108, asymptotic=0.037245} \\
& \triangleright \text { check: } n=100, \text { exact=2.617608×10 }=12, \text { asymptotic=2.617596×10 }
\end{aligned}
$$

## Hard graph problems

* finding $\chi, \alpha$ and $\omega$ is proven to be NP-complete
$\triangleright$ this means that it unlikely that any algorithm exists which runs in time which is a polynomial function of the number of nodes
* we therefore have two options:
$\triangleright$ use a heuristic, which is probably fast but may give the wrong answer
$\triangleright$ use an exact algorithm, and try to make it as fast as possible by clever coding
* the theory is well developed and presented in many places, but little practical experience gets reported
* therefore, ti is interesting to try exact algorithms for these problems to determine how big the problems can be in practice, and compared the timings with approximate (relaxed) algorithms


## Chromatic number $\chi$

* many papers appeared in the 1980s about backtracking (branch-and-bound) methods. Some had errors
$\triangleright$ idea: start to compute all colourings, but abort one as soon as it is worse than the best so far
* can be combined with heuristics (greedy colourings) and exact bounds like $\omega \leqslant \chi \leqslant \Delta+1$, where $\Delta$ is the maximum degree
* tradeoff in using heuristics depends on type of graph
* in practice (with a well-written C program), up to 100 nodes is ok, and up to 200 for very sparse or very dense graphs
$\star$ best results are in a PhD by Chiarandini (Darmstadt 2005) http://www.imada.sdu.dk/~marco/public.php
* determining $\chi$ may be easy for many real-world graphs with specific structures (Coudert, DAC97)


## Achlioptas \& Naor

* The two possible values of the chromatic number of a random graph Annals of Mathematics, 162 (2005) http://www.cs.ucsc.edu/~optas/
* the authors show that for fixed $d$, as $n \rightarrow \infty$, the chromatic number of $G\{n, d / n\}$ is either $k$ or $k+1$, where $k$ is the smallest integer such that $d<2 k \log (k)$. In fact, this means that $k$ is given by $\lceil d /(2 W(d / 2))\rceil$
$\star G\{n, p\}$ means the random graph on $n$ nodes and each possible edge appears independently with probability $p$


## Achlioptas \& Naor cotd.



## Achlioptas \& Naor - my conjecture

* the next graph (each point is the average of 1 million trials) suggests that for small $d$, we have $\operatorname{Pr}[\chi \in[k, k+1]] \sim 1-\exp (-d n / 2)$



## Clique number

* In Modern graph theory, page 230, Bollobás shows that the clique number of $G(n, p)$ as $n \rightarrow \infty$ is almost surely $d$ or $d+1$, where $d$ is the greatest natural number such that $\binom{n}{d} p^{\binom{d}{2}} \geqslant \log (n)$
* How accurate is this formula when $n$ is small?
$\star$ We have $d=2 \log (n) / \log (1 / p)+\mathcal{O}(\log \log (n))$.


## Clique number - simulation results



## Counting graphs

Number of graphs on $n$ nodes with chromatic number $k$ :

| $\mathrm{n}=$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | 1 | 2 | 6 | 12 | 34 | 87 | 302 | 1118 | 5478 | A076278 |
| 3 | 0 | 0 | 1 | 3 | 16 | 84 | 579 | 5721 | 87381 | 2104349 | A076279 |
| 4 | 0 | 0 | 0 | 1 | 4 | 31 | 318 | 5366 | 155291 | 7855628 | A076280 |
| 5 | 0 | 0 | 0 | 0 | 1 | 5 | 52 | 867 | 28722 | 1919895 | A076281 |
| 6 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 81 | 2028 | 115391 | A076282 |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 7 | 118 | 4251 |  |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 8 | 165 |  |
| 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 9 |  |
| 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |  |
| 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |

(A-numbers from http://www.research.att.com/~njas/sequences/)

A real-world hard probelm

* I use real 802.11b spectral characteristics \& interference behaviour
* the channel allocation problem is to minimize the maximum interference problem
* randomly placed nodes
* hexagonal lattices


## The channel allocation problem

* choose $x$ such that some objective function is minimized
* This is a combinatorial optimization problem, so to find the exact solution we must explicitly enumerate and evaluate all channel assignments
* the number of assignments grows as (number of nodes) ${ }^{\text {number of channels }}$ and becomes infeasible to do a complete search beyond about 12 channels and 12 nodes
* so we use branch and bound method for the maximum interference problem.
$\triangleright$ we build a tree showing all possible assignment vectors with the depth of tree representing the number of nodes being considered and each leaf a different complete assignment. We do this by testing partial solutions and disregarding ones worse than the best so far.


## The maximum interference problem

* the maximum interference at node $i$ is

$$
w_{i}=\max _{\substack{j=1, \ldots, n \\ j \neq i}} I_{i j}
$$

* the objective function is $w(x)=\max _{i} w_{i}(x)$; that is, the worst maximum interference at any AP
* the optimization problem is

$$
\min _{x} w(x)
$$

that is, we aim to minimize the worst maximum interference

* this is feasible to solve exactly if good pruning strategies can be found


## Pruning and preprocessing

* to have any advantage over complete enumeration efficient pruning strategies must be found
* testing of partial solutions to determine possible good solutions
$\triangleright$ in a typical example the number of function calls can drop from $6.10^{6}$ to about 6000
* calculation of minimum separations from interference matrix
$\triangleright$ this can usually give a further $50-75 \%$ reduction in function calls
* while branch and bound is powerful on its own it is sensitive to the order in which the nodes are considered.
* by using the $k$-means heuristic to locate clusters and analysing these first pruning, become much more effective


## Randomly placed nodes: before \& after optimization


typical improvement: 2 Mbps coverage goes from $50 \%$ to $90 \%$.

Hexagonal lattice - 3 and 12 channels

typical improvement: 12 Mbps coverage goes from $26 \%$ to $100 \%$.

## Two-network optimization



First optimize all 20 nodes, then imagine the first 10 nodes belong to a competitor's network and are optimized and then frozen, and then we come in with the second 10 nodes. How is our coverage and SNR affected by the competitor's network? (Answer: only about 2dB.)

Scaling of interference \& throughput with node density



Results here are averaged over many instances of Poisson point process.

