Some hard graph problems in telecoms

Keith Briggs
Keith.Briggs@bt.com
http://keithbriggs.info

Warwick Complexity Forum - 2006 Oct 311515

BT Research at Martlesham, Suffolk

> * Cambridge-Ipswich high-tech corridor
> * 2000 technologists
> * 15 companies
> * UCL, Univ of Essex

Mathematics in telecoms

* graph theory - network models
* optimization of network topology
* information theory
* Markov chains \& queuing theory
* coding, compression, and cryptography
* packet protocols \& traffic characteristics
* asynchronous distributed algorithms
* caching and data distribution strategies
* optimization of dynamic processes on networks (typically convex but non-smooth)
* business modelling \& financial forecasting

夫 complex systems?

Talk outline

* graph concepts and problems
* chromatic number and clique number
* a real problem - channel allocation
* theme - How to balance (exact) theory with (real) practice?
* this is about algorithmic complexity, not complex systems as usually understand. But perhaps there are some overlaps . . .

Graph concepts

\star clique - a complete subgraph

* maximal clique - a clique that cannot be extended to a larger one
* lonely set - a pairwise disjoint set of nodes (stable set, independent set)
* colouring - an assignment of colours to nodes in which no neighbours have the same colour
\star chromatic number $\chi-$ the number of colours in a colouring with a minimal number of colours
\star loneliness α - the number of nodes in a largest lonely set
* clique number ω - the number of nodes in a largest maximal clique

Hard graph problems

* finding χ, α and ω is proven to be NP-complete
\triangleright this means that it unlikely that any algorithm exists which runs in time which is a polynomial function of the number of nodes
* we therefore have two options:
\triangleright use a heuristic, which is probably fast but may give the wrong answer
\triangleright use an exact algorithm, and try to make it as fast as possible by clever coding
* the theory is well developed and presented in many places, but little practical experience gets reported
* therefore, ti is interesting to try exact algorithms for these problems to determine how big the problems can be in practice, and compared the timings with approximate (relaxed) algorithms

Chromatic number χ

* many papers appeared in the 1980s about backtracking (branch-and-bound) methods. Some had errors
\triangleright idea: start to compute all colourings, but abort one as soon as it is worse than the best so far
* can be combined with heuristics (greedy colourings) and exact bounds like $\omega \leqslant \chi \leqslant \Delta+1$, where Δ is the maximum degree
* tradeoff in using heuristics depends on type of graph
* in practice (with a well-written C program), up to 100 nodes is ok, and up to 200 for very sparse or very dense graphs
\star best results are in a PhD by Chiarandini (Darmstadt 2005) http://www.imada.sdu.dk/~marco/public.php
* determining χ may be easy for many real-world graphs with specific structures (Coudert, DAC97)

Achlioptas \& Naor

* The two possible values of the chromatic number of a random graph Annals of Mathematics, 162 (2005) http://www.cs.ucsc.edu/~optas/
* the authors show that for fixed d, as $n \rightarrow \infty$, the chromatic number of $G\{n, d / n\}$ is either k or $k+1$, where k is the smallest integer such that $d<2 k \log (k)$. In fact, this means that k is given by $\lceil d /(2 W(d / 2))\rceil$
$\star G\{n, p\}$ means the random graph on n nodes and each possible edge appears independently with probability p

Achlioptas \& Naor cotd.

Achlioptas \& Naor - my conjecture

* the next graph (each point is the average of 1 million trials) suggests that for small d, we have $\operatorname{Pr}[\chi \in[k, k+1]] \sim 1-\exp (-d n / 2)$

Clique number

* In Modern graph theory, page 230, Bollobás shows that the clique number of $G(n, p)$ as $n \rightarrow \infty$ is almost surely d or $d+1$, where d is the greatest natural number such that $\binom{n}{d} p^{\binom{d}{2}} \geqslant \log (n)$
* How accurate is this formula when n is small?
\star We have $d=2 \log (n) / \log (1 / p)+\mathcal{O}(\log \log (n))$.

Clique number - simulation results

Counting graphs

Number of graphs on n nodes with chromatic number k :

$\mathrm{n}=$	1	2	3	4	5	6	7	8	9	10	
2	0	1	2	6	12	34	87	302	1118	5478	A076278
3	0	0	1	3	16	84	579	5721	87381	2104349	A076279
4	0	0	0	1	4	31	318	5366	155291	7855628	A076280
5	0	0	0	0	1	5	52	867	28722	1919895	A076281
6	0	0	0	0	0	1	6	81	2028	115391	A076282
7	0	0	0	0	0	0	1	7	118	4251	
8	0	0	0	0	0	0	0	1	8	165	
9	0	0	0	0	0	0	0	0	1	9	
10	0	0	0	0	0	0	0	0	0	1	
11	0	0	0	0	0	0	0	0	0	0	

(A-numbers from http://www.research.att.com/~njas/sequences/)

Counting graphs cotd.

Number of graphs on n nodes with clique number k :

n	1	2	3	4	5	6	7	8	9	10	
2	0	1	2	6	13	37	106	409	1896	12171	A052450
3	0	0	1	3	15	82	578	6021	101267	2882460	A052451
4	0	0	0	1	4	30	301	4985	142276	7269487	A052452
5	0	0	0	0	1	5	51	842	27107	1724440	A077392
6	0	0	0	0	0	1	6	80	1995	112225	A077393
7	0	0	0	0	0	0	1	7	117	4210	A077394
8	0	0	0	0	0	0	0	1	8	164	
9	0	0	0	0	0	0	0	0	1	9	
10	0	0	0	0	0	0	0	0	0	1	

(A-numbers from http://www.research.att.com/~njas/sequences/)

A real-world hard probelm

* 802.11b spectral characteristics \& interference
* the channel allocation problem
* the minimize maximum interference problem
* randomly placed nodes

夫 hexagonal lattices

802.11b spectral characteristics

* a channel assignment is a vector $x \in \mathbb{Z}^{n}$, meaning that x_{i} is the channel used by node i
* the 802.11 b spectral envelope is $\operatorname{ch}(n, f) \equiv(f-2412-s(n-1)) / 22$

$$
\begin{aligned}
s(f) & \equiv|\sin (2 \pi f) /(2 \pi f)| \\
\mathrm{flt}(x) & \equiv 1 /\left(1+(2.6 x)^{6}\right) \\
\mathrm{ol}(n, m, x) & \equiv \mathrm{flt}(\operatorname{ch}(n, x)) s(\operatorname{ch}(n, x)) \mathrm{flt}(\operatorname{ch}(m, x)) s(\operatorname{ch}(m, x)) \\
k_{o} & \equiv \int_{2200}^{2700} \mathrm{ol}(1,1, x) \mathrm{d} x \approx 9.265481882 \\
\text { olf }_{k} & \equiv \int_{2200}^{2700} \mathrm{ol}(1, k+1, x) / k_{o} \mathbf{d} x
\end{aligned}
$$

* this gives (taking $20 \log _{10}\left(\right.$ olf $\left._{k}\right)$ to get dB) the vector of overlap factors as: $[0,-2.767,-11.329,-28.525,-45.296,-61.560,-74.686, \ldots$

802.11b interference

\star the interference at node j caused by node i is $I_{i j}=r_{i j}+c\left(\left|x_{i}-x_{j}\right|\right)$ where $r_{i j}=T_{j}-\left(P_{\text {ref }}+10 m \log _{10}\left(d_{i j}\right)\right) \mathrm{dBm}$ is the received power at node i from node j.
$\star d_{i j}$ is the distance from node i to node j

* the log factors are due the conversions to and from dB units
$\star T_{j}$ is the transmit power, typically $20 \mathrm{dBm}(100 \mathrm{~mW})$
* $P_{\text {ref }}$ is the reference loss at 1 m , typically 40.2 dB
$\star m$ is the path loss exponent, typically about 2.86

The channel allocation problem

* choose x such that some objective function is minimized
* This is a combinatorial optimization problem, so to find the exact solution we must explicitly enumerate and evaluate all channel assignments
* the number of assignments grows as (number of nodes) ${ }^{\text {number of channels }}$ and becomes infeasible to do a complete search beyond about 12 channels and 12 nodes
* so we use branch and bound method for the maximum interference problem.
\triangleright we build a tree showing all possible assignment vectors with the depth of tree representing the number of nodes being considered and each leaf a different complete assignment. We do this by testing partial solutions and disregarding ones worse than the best so far.

The maximum interference problem

* the maximum interference at node i is

$$
w_{i}=\max _{\substack{j=1, \ldots, n \\ j \neq i}} I_{i j}
$$

* the objective function is $w(x)=\max _{i} w_{i}(x)$; that is, the worst maximum interference at any AP
* the optimization problem is

$$
\min _{x} w(x)
$$

that is, we aim to minimize the worst maximum interference

* this is feasible to solve exactly if good pruning strategies can be found

Pruning and preprocessing

* to have any advantage over complete enumeration efficient pruning strategies must be found
* testing of partial solutions to determine possible good solutions
\triangleright in a typical example the number of function calls can drop from 6.10^{6} to about 6000
* calculation of minimum separations from interference matrix
\triangleright this can usually give a further $50-75 \%$ reduction in function calls
* while branch and bound is powerful on its own it is sensitive to the order in which the nodes are considered.
* by using the k-means heuristic to locate clusters and analysing these first pruning, become much more effective

Randomly placed nodes: before \& after optimization

typical improvement: 2 Mbps coverage goes from 50% to 90%.

Hexagonal lattice - 3 and 12 channels

typical improvement: 12 Mbps coverage goes from 26% to 100%.

Two-network optimization

First optimize all 20 nodes, then imagine the first 10 nodes belong to a competitor's network and are optimized and then frozen, and then we come in with the second 10 nodes. How is our coverage and SNR affected by the competitor's network? (Answer: only about 2dB.)

Scaling of interference \& throughput with node density

Results here are averaged over many instances of Poisson point process.

Relaxations and semidefinite programming

* idea: formulate as an integer linear program (still hard), then relax constraints to obtain a semidefinite program (SDP, easy to solve)
* SDP: provides the Lovász θ number for a graph. This number is an upper bound for the clique number of a graph, and a lower bound for the chromatic number
* best SDP code: DSDP5. 8 by Benson http://www-unix.mcs.anl.gov/DSDP/
* distribution of $\chi-\theta$ on $G\{n, p\}$:

LP formulation of chromatic number and clique number
\star let B be the 0-1 matrix with n rows and whose columns indicate the lonely sets (in practice, ok to use only maximal lonely sets). Finding B is slow

* chromatic number χ is the solution of the 0-1 ILP

$$
\begin{array}{rc}
\operatorname{minimize} & 1^{T} x \\
\text { subject to } & B x \geqslant 1
\end{array}
$$

* clique number ω is the solution of the 0-1 ILP

maximize	$y^{T} 1$
subject to	$y^{T} B \leqslant 1$

* solving the 0-1 ILPs is hard, so we don't try

Fractional chromatic number χ_{f}

* used by McDiarmid for a radio channel assignment problem in which the demand (required number of channels) at each node varies
* χ_{f} is the solution of the LP (ordinary LP, so easy)

$$
\begin{array}{rc}
\operatorname{minimize} & 1^{T} x \\
\text { subject to } & B x \geqslant 1 \\
& x \geqslant 0
\end{array}
$$

$\star \omega_{\mathrm{f}}$ is the solution of the LP (ordinary LP, so easy)

$$
\begin{array}{rc}
\text { maximize } & y^{T} 1 \\
\text { subject to } & y^{T} B \leqslant 1 \\
& y \geqslant 0
\end{array}
$$

