Some hard graph problems in telecoms

Keith Briggs

Keith.Briggs@bt.com http://keithbriggs.info

Warwick Complexity Forum - 2006 Oct 31 1515

 $\texttt{graph_problems_Warwick_2006_Oct_31.tex} \text{ typeset } 2006 \text{ October } 27 \text{ } 14:08 \text{ in } \texttt{pdfIAT}_{E}X \text{ on a linux system}$

BT Research at Martlesham, Suffolk

- ★ Cambridge-Ipswich high-tech corridor
- ★ 2000 technologists
- ★ 15 companies
- ★ UCL, Univ of Essex

Mathematics in telecoms

- ★ graph theory network models
- ★ optimization of network topology
- ★ information theory
- ★ Markov chains & queuing theory
- ★ coding, compression, and cryptography
- ★ packet protocols & traffic characteristics
- ★ asynchronous distributed algorithms
- ★ caching and data distribution strategies
- optimization of dynamic processes on networks (typically convex but non-smooth)
- ★ business modelling & financial forecasting
- ★ complex systems?

Talk outline

- \star graph concepts and problems
- ★ chromatic number and clique number
- ★ a real problem channel allocation
- ★ theme How to balance (exact) theory with (real) practice?
- ★ this is about algorithmic complexity, not complex systems as usually understand. But perhaps there are some overlaps . . .

Graph concepts

- ★ *clique* a complete subgraph
- ★ maximal clique a clique that cannot be extended to a larger one
- ★ lonely set a pairwise disjoint set of nodes (stable set, independent set)
- ★ colouring an assignment of colours to nodes in which no neighbours have the same colour
- \star chromatic number χ the number of colours in a colouring with a minimal number of colours
- \star loneliness α the number of nodes in a largest lonely set
- ★ clique number ω the number of nodes in a largest maximal clique

Hard graph problems

\star finding χ , α and ω is proven to be NP-complete

this means that it unlikely that any algorithm exists which runs in time which is a polynomial function of the number of nodes

\star we therefore have two options:

▶ use a heuristic, which is probably fast but may give the wrong answer

- ▶ use an exact algorithm, and try to make it as fast as possible by clever coding
- ★ the theory is well developed and presented in many places, but little practical experience gets reported
- ★ therefore, ti is interesting to try exact algorithms for these problems to determine how big the problems can be in practice, and compared the timings with approximate (relaxed) algorithms

Chromatic number χ

- many papers appeared in the 1980s about backtracking (branchand-bound) methods. Some had errors
 - idea: start to compute all colourings, but abort one as soon as it is worse than the best so far
- ★ can be combined with heuristics (greedy colourings) and exact bounds like $\omega \leq \chi \leq \Delta + 1$, where Δ is the maximum degree
- ★ tradeoff in using heuristics depends on type of graph
- ★ in practice (with a well-written C program), up to 100 nodes is ok, and up to 200 for very sparse or very dense graphs
- best results are in a PhD by Chiarandini (Darmstadt 2005)
 http://www.imada.sdu.dk/~marco/public.php
- \star determining χ may be easy for many real-world graphs with specific structures (Coudert, DAC97)

Achlioptas & Naor

- ★ The two possible values of the chromatic number of a random graph Annals of Mathematics, 162 (2005) http://www.cs.ucsc.edu/~optas/
- ★ the authors show that for fixed d, as $n \to \infty$, the chromatic number of $G\{n, d/n\}$ is either k or k+1, where k is the smallest integer such that $d < 2k \log(k)$. In fact, this means that k is given by $\lceil d/(2W(d/2)) \rceil$
- \star $G\{n,p\}$ means the random graph on n nodes and each possible edge appears independently with probability p

Achlioptas & Naor cotd.

Achlioptas & Naor - my conjecture

★ the next graph (each point is the average of 1 million trials) suggests that for small d, we have $\Pr[\chi \in [k, k+1]] \sim 1 - \exp(-dn/2)$

Clique number

- ★ In Modern graph theory, page 230, Bollobás shows that the clique number of G(n,p) as $n \to \infty$ is almost surely d or d+1, where d is the greatest natural number such that $\binom{n}{d}p^{\binom{d}{2}} \ge \log(n)$
- \star How accurate is this formula when n is small?
- * We have $d = 2\log(n)/\log(1/p) + \mathcal{O}(\log\log(n))$.

Clique number - simulation results

Counting graphs

Number of graphs on n nodes with chromatic number k:

n =	1	2	3	4	5	6	7	8	9	10	
k											
2	0	1	2	6	12	34	87	302	1118	5478	A076278
3	0	0	1	3	16	84	579	5721	87381	2104349	A076279
4	0	0	0	1	4	31	318	5366	155291	7855628	A076280
5	0	0	0	0	1	5	52	867	28722	1919895	A076281
6	0	0	0	0	0	1	6	81	2028	115391	A076282
7	0	0	0	0	0	0	1	7	118	4251	
8	0	0	0	0	0	0	0	1	8	165	
9	0	0	0	0	0	0	0	0	1	9	
10	0	0	0	0	0	0	0	0	0	1	
11	0	0	0	0	0	0	0	0	0	0	

(A-numbers from http://www.research.att.com/~njas/sequences/)

Counting graphs cotd.

Number of graphs on n nodes with clique number k:

n =	1	2	3	4	5	6	7	8	9	10	
k											
2	0	1	2	6	13	37	106	409	1896	12171	A052450
3	0	0	1	3	15	82	578	6021	101267	2882460	A052451
4	0	0	0	1	4	30	301	4985	142276	7269487	A052452
5	0	0	0	0	1	5	51	842	27107	1724440	A077392
6	0	0	0	0	0	1	6	80	1995	112225	A077393
7	0	0	0	0	0	0	1	7	117	4210	A077394
8	0	0	0	0	0	0	0	1	8	164	
9	0	0	0	0	0	0	0	0	1	9	
10	0	0	0	0	0	0	0	0	0	1	

(A-numbers from http://www.research.att.com/~njas/sequences/)

A real-world hard probelm

- ★ 802.11b spectral characteristics & interference
- \star the channel allocation problem
- \star the minimize maximum interference problem
- ★ randomly placed nodes
- \star hexagonal lattices

802.11b spectral characteristics

- \star a *channel assignment* is a vector $x \in \mathbb{Z}^n$, meaning that x_i is the channel used by node i
- ★ the 802.11b spectral envelope is $ch(n, f) \equiv (f-2412-s(n-1))/22$

$$\begin{split} s(f) &\equiv |\sin(2\pi f)/(2\pi f)| \\ \mathsf{flt}(x) &\equiv 1/(1+(2.6x)^6) \\ \mathsf{ol}(n,m,x) &\equiv \mathsf{flt}(ch(n,x))s(ch(n,x))\mathsf{flt}(ch(m,x))s(ch(m,x)) \\ k_o &\equiv \int_{2200}^{2700} \mathsf{ol}(1,1,x) \, \mathsf{d}x \approx 9.265481882 \\ \mathsf{olf}_k &\equiv \int_{2200}^{2700} \mathsf{ol}(1,k+1,x)/k_o \, \mathsf{d}x. \end{split}$$

★ this gives (taking $20 \log_{10}(\text{olf}_k)$ to get dB) the vector of overlap factors as: [0, -2.767, -11.329, -28.525, -45.296, -61.560, -74.686, ...

802.11b interference

- ★ the *interference at node j* caused by node *i* is $I_{ij} = r_{ij} + c(|x_i x_j|)$ where $r_{ij} = T_j - (P_{ref} + 10m \log_{10}(d_{ij}))$ dBm is the received power at node *i* from node *j*.
- \star d_{ij} is the distance from node *i* to node *j*
- \star the \log factors are due the conversions to and from dB units
- \star T_j is the transmit power, typically 20dBm (100mW)
- \star P_{ref} is the reference loss at 1m, typically 40.2dB
- $\star~m$ is the path loss exponent, typically about 2.86

The channel allocation problem

- \star choose x such that some objective function is minimized
- ★ This is a combinatorial optimization problem, so to find the exact solution we must explicitly enumerate and evaluate all channel assignments
- ★ the number of assignments grows as (number of nodes)^{number of channels} and becomes infeasible to do a complete search beyond about 12 channels and 12 nodes
- ★ so we use branch and bound method for the maximum interference problem.
 - we build a tree showing all possible assignment vectors with the depth of tree representing the number of nodes being considered and each leaf a different complete assignment. We do this by testing partial solutions and disregarding ones worse than the best so far.

The maximum interference problem

★ the maximum interference at node i is

$$w_i = \max_{\substack{j=1,\dots,n\\j\neq i}} I_{ij}$$

- ★ the *objective function* is $w(x) = \max_i w_i(x)$; that is, the worst maximum interference at any AP
- ★ the *optimization problem* is

 $\min_x w(x);$

that is, we aim to minimize the worst maximum interference

★ this is feasible to solve exactly if good pruning strategies can be found

Pruning and preprocessing

- ★ to have any advantage over complete enumeration efficient pruning strategies must be found
- ★ testing of partial solutions to determine possible good solutions
 - ▶ in a typical example the number of function calls can drop from 6.10⁶ to about 6000
- ★ calculation of minimum separations from interference matrix
 - ▷ this can usually give a further 50-75% reduction in function calls
- ★ while branch and bound is powerful on its own it is sensitive to the order in which the nodes are considered.
- \star by using the k-means heuristic to locate clusters and analysing these first pruning, become much more effective

Randomly placed nodes: before & after optimization

typical improvement: 2Mbps coverage goes from 50% to 90%.

Hexagonal lattice - 3 and 12 channels

typical improvement: 12Mbps coverage goes from 26% to 100%.

Two-network optimization

First optimize all 20 nodes, then imagine the first 10 nodes belong to a competitor's network and are optimized and then frozen, and then we come in with the second 10 nodes. How is our coverage and SNR affected by the competitor's network? (Answer: only about 2dB.)

Scaling of interference & throughput with node density

Results here are averaged over many instances of Poisson point process.

Relaxations and semidefinite programming

- ★ idea: formulate as an integer linear program (still hard), then relax constraints to obtain a semidefinite program (SDP, easy to solve)
- * SDP: provides the Lovász θ number for a graph. This number is an upper bound for the clique number of a graph, and a lower bound for the chromatic number
- * best SDP code: DSDP5.8 by Benson
 http://www-unix.mcs.anl.gov/DSDP/

LP formulation of chromatic number and clique number

- ★ let B be the 0-1 matrix with n rows and whose columns indicate the lonely sets (in practice, ok to use only maximal lonely sets). Finding B is slow
- \star chromatic number χ is the solution of the 0-1 ILP

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T x\\ \text{subject to} & Bx \geqslant 1 \end{array}$

 \star clique number ω is the solution of the 0-1 ILP

 $\begin{array}{ll} \mbox{maximize} & y^T 1 \\ \mbox{subject to} & y^T B \leqslant 1 \end{array}$

 \star solving the 0-1 ILPs is hard, so we don't try

Fractional chromatic number χ_{f}

- ★ used by McDiarmid for a radio channel assignment problem in which the demand (required number of channels) at each node varies
- $\star \chi_{\rm f}$ is the solution of the LP (ordinary LP, so easy)

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T x\\ \text{subject to} & Bx \geqslant 1\\ & x \geqslant 0 \end{array}$

 $\star \omega_{\rm f}$ is the solution of the LP (ordinary LP, so easy)

$$\begin{array}{ll} \mbox{maximize} & y^T 1 \\ \mbox{subject to} & y^T B \leqslant 1 \\ & y \geqslant 0 \end{array}$$