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BT Research at Martlesham, Suffolk

F Cambridge-Ipswich
high-tech corridor

F 2000 technologists

F 15 companies

F UCL, Univ of Essex
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Mathematics in telecoms

F graph theory - network models

F optimization of network topology

F information theory

F Markov chains & queuing theory

F coding, compression, and cryptography

F packet protocols & traffic characteristics

F asynchronous distributed algorithms

F caching and data distribution strategies

F optimization of dynamic processes on networks (typically convex
but non-smooth)

F business modelling & financial forecasting

F complex systems?
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Talk outline

F graph concepts and problems

F chromatic number and clique number

F a real problem - channel allocation

F theme - How to balance (exact) theory with (real) practice?

F this is about algorithmic complexity, not complex systems as
usually understand. But perhaps there are some overlaps . . .
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Graph concepts
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F clique - a complete subgraph
F maximal clique - a clique that cannot be

extended to a larger one
F lonely set - a pairwise disjoint set of nodes

(stable set, independent set)
F colouring - an assignment of colours to

nodes in which no neighbours have the
same colour

F chromatic number χ - the number of
colours in a colouring with a minimal num-
ber of colours

F loneliness α - the number of nodes in a
largest lonely set

F clique number ω - the number of nodes in
a largest maximal clique
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Hard graph problems

F finding χ, α and ω is proven to be NP-complete
. this means that it unlikely that any algorithm exists which runs in time which is

a polynomial function of the number of nodes

F we therefore have two options:
. use a heuristic, which is probably fast but may give the wrong answer
. use an exact algorithm, and try to make it as fast as possible by clever coding

F the theory is well developed and presented in many places, but
little practical experience gets reported

F therefore, ti is interesting to try exact algorithms for these prob-
lems to determine how big the problems can be in practice, and
compared the timings with approximate (relaxed) algorithms
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Chromatic number χ

F many papers appeared in the 1980s about backtracking (branch-
and-bound) methods. Some had errors

. idea: start to compute all colourings, but abort one as soon as it is worse than
the best so far

F can be combined with heuristics (greedy colourings) and exact
bounds like ω 6 χ 6 ∆+1, where ∆ is the maximum degree

F tradeoff in using heuristics depends on type of graph

F in practice (with a well-written C program), up to 100 nodes is ok,
and up to 200 for very sparse or very dense graphs

F best results are in a PhD by Chiarandini (Darmstadt 2005)
http://www.imada.sdu.dk/~marco/public.php

F determining χ may be easy for many real-world graphs with
specific structures (Coudert, DAC97)
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Achlioptas & Naor

F The two possible values of the chromatic number of a random
graph Annals of Mathematics, 162 (2005)
http://www.cs.ucsc.edu/~optas/

F the authors show that for fixed d, as n → ∞, the chromatic
number of G{n, d/n} is either k or k+1, where k is the smallest
integer such that d < 2k log(k). In fact, this means that k is given
by dd/(2W (d/2))e

F G{n, p} means the random graph on n nodes and each possible
edge appears independently with probability p
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Achlioptas & Naor cotd.
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Achlioptas & Naor - my conjecture

F the next graph (each point is the average of 1 million trials) sug-
gests that for small d, we have Pr [χ ∈ [k, k+1]] ∼ 1−exp(−dn/2)

20 40 60 80 100 120 140
−5

−4

−3

−2

−1

0

number of nodes

lo
g 1

0(1
−

Pr
( χ

 ∈
 [k

,k
+

1]
))

Keith Briggs Some hard graph problems in telecoms 10 of 27



Clique number

F In Modern graph theory, page 230, Bollobás shows that the clique
number of G(n, p) as n → ∞ is almost surely d or d+1, where d

is the greatest natural number such that
(
n
d

)
p(d

2) > log(n)

F How accurate is this formula when n is small?

F We have d = 2 log(n)/ log(1/p)+O(log log(n)).

Keith Briggs Some hard graph problems in telecoms 11 of 27



Clique number - simulation results
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Counting graphs

Number of graphs on n nodes with chromatic number k:

n = 1 2 3 4 5 6 7 8 9 10
k ----------------------------------------------------------
2 0 1 2 6 12 34 87 302 1118 5478 A076278
3 0 0 1 3 16 84 579 5721 87381 2104349 A076279
4 0 0 0 1 4 31 318 5366 155291 7855628 A076280
5 0 0 0 0 1 5 52 867 28722 1919895 A076281
6 0 0 0 0 0 1 6 81 2028 115391 A076282
7 0 0 0 0 0 0 1 7 118 4251
8 0 0 0 0 0 0 0 1 8 165
9 0 0 0 0 0 0 0 0 1 9
10 0 0 0 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 0 0 0

(A-numbers from http://www.research.att.com/∼njas/sequences/)
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Counting graphs cotd.

Number of graphs on n nodes with clique number k:

n = 1 2 3 4 5 6 7 8 9 10
k ----------------------------------------------------------
2 0 1 2 6 13 37 106 409 1896 12171 A052450
3 0 0 1 3 15 82 578 6021 101267 2882460 A052451
4 0 0 0 1 4 30 301 4985 142276 7269487 A052452
5 0 0 0 0 1 5 51 842 27107 1724440 A077392
6 0 0 0 0 0 1 6 80 1995 112225 A077393
7 0 0 0 0 0 0 1 7 117 4210 A077394
8 0 0 0 0 0 0 0 1 8 164
9 0 0 0 0 0 0 0 0 1 9
10 0 0 0 0 0 0 0 0 0 1

(A-numbers from http://www.research.att.com/∼njas/sequences/)
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A real-world hard probelm

F 802.11b spectral characteristics & interference

F the channel allocation problem

F the minimize maximum interference problem

F randomly placed nodes

F hexagonal lattices
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802.11b spectral characteristics

F a channel assignment is a vector x ∈ Zn, meaning that xi is the
channel used by node i

F the 802.11b spectral envelope is ch(n, f) ≡ (f−2412−s(n−1))/22

s(f) ≡ | sin(2πf)/(2πf)|
flt(x) ≡ 1/(1+(2.6x)6)

ol(n, m, x) ≡ flt(ch(n, x))s(ch(n, x))flt(ch(m,x))s(ch(m,x))

ko ≡
∫ 2700

2200
ol(1, 1, x) dx ≈ 9.265481882

olfk ≡
∫ 2700

2200
ol(1, k+1, x)/ko dx.

F this gives (taking 20 log10(olfk) to get dB) the vector of overlap fac-
tors as: [0,−2.767,−11.329,−28.525,−45.296,−61.560,−74.686, . . .
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802.11b interference

F the interference at node j caused by node i is Iij = rij+c(|xi−xj|)
where rij = Tj−(Pref+10m log10(dij)) dBm is the received power
at node i from node j.

F dij is the distance from node i to node j

F the log factors are due the conversions to and from dB units

F Tj is the transmit power, typically 20dBm (100mW)

F Pref is the reference loss at 1m, typically 40.2dB

F m is the path loss exponent, typically about 2.86
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The channel allocation problem

F choose x such that some objective function is minimized

F This is a combinatorial optimization problem, so to find the exact
solution we must explicitly enumerate and evaluate all channel
assignments

F the number of assignments grows as (number of nodes)number of channels

and becomes infeasible to do a complete search beyond about 12
channels and 12 nodes

F so we use branch and bound method for the maximum interference
problem.

. we build a tree showing all possible assignment vectors with the depth of tree
representing the number of nodes being considered and each leaf a different
complete assignment. We do this by testing partial solutions and disregarding
ones worse than the best so far.
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The maximum interference problem

F the maximum interference at node i is

wi = max
j=1,...,n

j 6=i

Iij

F the objective function is w(x) = maxi wi(x); that is, the worst
maximum interference at any AP

F the optimization problem is

min
x

w(x);

that is, we aim to minimize the worst maximum interference

F this is feasible to solve exactly if good pruning strategies can be
found
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Pruning and preprocessing

F to have any advantage over complete enumeration efficient prun-
ing strategies must be found

F testing of partial solutions to determine possible good solutions
. in a typical example the number of function calls can drop from 6.106 to about

6000

F calculation of minimum separations from interference matrix
. this can usually give a further 50−75% reduction in function calls

F while branch and bound is powerful on its own it is sensitive to
the order in which the nodes are considered.

F by using the k-means heuristic to locate clusters and analysing
these first pruning, become much more effective
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Randomly placed nodes: before & after optimization

typical improvement: 2Mbps coverage goes from 50% to 90%.
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Hexagonal lattice - 3 and 12 channels

typical improvement: 12Mbps coverage goes from 26% to 100%.
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Two-network optimization

First optimize all 20 nodes, then imagine the first 10 nodes belong to a competitor’s
network and are optimized and then frozen, and then we come in with the second
10 nodes. How is our coverage and SNR affected by the competitor’s network?
(Answer: only about 2dB.)
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Scaling of interference & throughput with node density
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Results here are averaged over many instances of Poisson point process.
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Relaxations and semidefinite programming

F idea: formulate as an integer linear program (still hard), then
relax constraints to obtain a semidefinite program (SDP, easy to
solve)

F SDP: provides the Lovász θ number for a graph. This number is an
upper bound for the clique number of a graph, and a lower bound
for the chromatic number

F best SDP code: DSDP5.8 by Benson
http://www-unix.mcs.anl.gov/DSDP/
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LP formulation of chromatic number and clique number

F let B be the 0-1 matrix with n rows and whose columns indicate
the lonely sets (in practice, ok to use only maximal lonely sets).
Finding B is slow

F chromatic number χ is the solution of the 0-1 ILP

minimize 1Tx

subject to Bx > 1

F clique number ω is the solution of the 0-1 ILP

maximize yT1
subject to yTB 6 1

F solving the 0-1 ILPs is hard, so we don’t try
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Fractional chromatic number χf

F used by McDiarmid for a radio channel assignment problem in
which the demand (required number of channels) at each node
varies

F χf is the solution of the LP (ordinary LP, so easy)

minimize 1Tx

subject to Bx > 1
x > 0

F ωf is the solution of the LP (ordinary LP, so easy)

maximize yT1
subject to yTB 6 1

y > 0
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