Some practical experiences
 of
 hard graph problems

Keith Briggs
Keith.Briggs@bt.com
http://keithbriggs.info

BICS Seminar - University of Bath 2006 June 121315

BT Research at Martlesham, Suffolk

$\star \begin{aligned} & \text { Cambridge-Ipswich } \\ & \text { high-tech corridor }\end{aligned}$
$\star 2000$ technologists
$\star 15$ companies
\star UCL, Univ of Essex

Talk outline

* graph concepts and problems
* chromatic number and clique number
\star relaxations and optimization formulations
* performance in practice
* random k-sat
* Hamiltonian paths
* theme - Never mind the theory - how do things work in practice?

Graphs concepts

\star clique - a complete subgraph

* maximal clique - a clique that cannot be extended to a larger one
* lonely set - a pairwise disjoint set of nodes (stable set, independent set)
* colouring - an assignment of colours to nodes in which no neighbours have the same colour
\star chromatic number χ - the number of colours in a colouring with a minimal number of colours
\star loneliness α - the number of nodes in a largest lonely set
* clique number ω - the number of nodes in a largest maximal clique

Hard graph problems

* finding χ, α and ω is proven to be NP-complete
\triangleright this means that it unlikely that any algorithm exists which runs in time which is a polynomial function of the number of nodes
* we therefore have two options:
\triangleright use a heuristic, which is probably fast but may give the wrong answer
\triangleright use an exact algorithm, and try to make it as fast as possible by clever coding
* the theory is well developed and presented in many places, but little practical experience gets reported
* therefore, I tried exact algorithms for these problems to determine how big the problems can be in practice, and compared the timings with approximate (relaxed) algorithms

Chromatic number χ

* many papers appeared in the 1980s about backtracking (branch-and-bound) methods. Some had errors
\triangleright idea: start to compute all colourings, but abort one as soon as it is worse than the best so far
* can be combined with heuristics (greedy colourings) and exact bounds like $\omega \leqslant \chi \leqslant \Delta+1$, where Δ is the maximum degree
* tradeoff in using heuristics depends on type of graph
* in practice (with a well-written C program), up to 100 nodes is ok, and up to 200 for very sparse or very dense graphs
\star best results are in a PhD by Chiarandini (Darmstadt 2005) http://www.imada.sdu.dk/~marco/public.php
* determining χ may be easy for many real-world graphs with specific structures (Coudert, DAC97)

Loneliness number α and clique number ω

* best algorithm I found was one by Tsukiyama, Ide, Ariyoshi, \& Shirakawa (SIAM J. Computing 6 505-517 (1977))
* can use graph complementation to flip these two calculations
* in practice (with a well-written C program), up to 100 nodes is ok, and up to 200 for very sparse or very dense graphs

Relaxations and semidefinite programming

* idea: formulate as an integer linear program (still hard), then relax constraints to obtain a semidefinite program (SDP, easy to solve)
* SDP: provides the Lovász θ number for a graph. This number is an upper bound for the clique number of a graph, and a lower bound for the chromatic number
* best SDP code: DSDP5. 8 by Benson http://www-unix.mcs.anl.gov/DSDP/
* distribution of $\chi-\theta$ on $G\{n, p\}$:

LP formulation of chromatic number and clique number
\star let B be the 0-1 matrix with n rows and whose columns indicate the lonely sets (in practice, ok to use only maximal lonely sets). Finding B is slow

* chromatic number χ is the solution of the 0-1 ILP

$$
\begin{array}{rc}
\text { minimize } & 1^{T} x \\
\text { subject to } & B x \geqslant 1
\end{array}
$$

* clique number ω is the solution of the 0-1 ILP

maximize	$y^{T} 1$
subject to	$y^{T} B \leqslant 1$

* solving the 0-1 ILPs is hard, so we don't try

Fractional chromatic number χ_{f}

* used by McDiarmid for a radio channel assignment problem in which the demand (required number of channels) at each node varies
* χ_{f} is the solution of the LP (ordinary LP, so easy)

$$
\begin{array}{cc}
\text { minimize } & 1^{T} x \\
\text { subject to } & B x \geqslant 1 \\
& x \geqslant 0
\end{array}
$$

$\star \omega_{\mathrm{f}}$ is the solution of the LP (ordinary LP, so easy)

$$
\begin{array}{cc}
\text { maximize } & y^{T} 1 \\
\text { subject to } & y^{T} B \leqslant 1 \\
& y \geqslant 0
\end{array}
$$

Typical results

* I have programmed all the methods

graph	n	p or m	α	ω	χ_{f}	χ	θ	
g1	10	0.5	4	4	4	4	4	medium
g2	10	0.9	3	7	7	7	7	dense
g3	10	0.1	9	2	2	2	2	sparse
g4	50	5	45	2	2	2	2	sparse, big
g5	50	100	23	3	3	3	3	medium density, big
g6	50	1000	4	14	16.5	17	15.36	high density, big

* theorem: we always have $\omega \leqslant \omega_{\mathrm{f}} \leqslant \chi_{\mathrm{f}} \leqslant \chi$
\star recall $\omega \leqslant \theta \leqslant \chi$

Achlioptas \& Naor

* The two possible values of the chromatic number of a random graph Annals of Mathematics, 162 (2005) http://www.cs.ucsc.edu/~optas/
* the authors show that for fixed d, as $n \rightarrow \infty$, the chromatic number of $G\{n, d / n\}$ is either k or $k+1$, where k is the smallest integer such that $d<2 k \log (k)$. In fact, this means that k is given by $\lceil d /(2 W(d / 2))\rceil$
$\star G\{n, p\}$ means the random graph on n nodes and each possible edge appears independently with probability p

Achlioptas \& Naor cotd.

Achlioptas \& Naor - my conjecture

* the next graph (each point is the average of 1 million trials) suggests that for small d, we have $\operatorname{Pr}[\chi \in[k, k+1]] \sim 1-\exp (-d n / 2)$

Cliques

* In Modern graph theory, page 230, Bollobás shows that the clique number of $G(n, p)$ as $n \rightarrow \infty$ is almost surely d or $d+1$, where d is the greatest natural number such that $\binom{n}{d} p^{\binom{d}{2}} \geqslant \log (n)$
* How accurate is this formula when n is small?
\star We have $d=2 \log (n) / \log (1 / p)+\mathcal{O}(\log \log (n))$.

Cliques - simulation results

Counting graphs

Number of graphs on n nodes with chromatic number k :

$\mathrm{n}=$	1	2	3	4	5	6	7	8	9	10	
2	0	1	2	6	12	34	87	302	1118	5478	A076278
3	0	0	1	3	16	84	579	5721	87381	2104349	A076279
4	0	0	0	1	4	31	318	5366	155291	7855628	A076280
5	0	0	0	0	1	5	52	867	28722	1919895	A076281
6	0	0	0	0	0	1	6	81	2028	115391	A076282
7	0	0	0	0	0	0	1	7	118	4251	
8	0	0	0	0	0	0	0	1	8	165	
9	0	0	0	0	0	0	0	0	1	9	
10	0	0	0	0	0	0	0	0	0	1	
11	0	0	0	0	0	0	0	0	0	0	

(A-numbers from http://www.research.att.com/~njas/sequences/)

Counting graphs cotd.

Number of graphs on n nodes with clique number k :

n	1	2	3	4	5	6	7	8	9	10	
2	0	1	2	6	13	37	106	409	1896	12171	A052450
3	0	0	1	3	15	82	578	6021	101267	2882460	A052451
4	0	0	0	1	4	30	301	4985	142276	7269487	A052452
5	0	0	0	0	1	5	51	842	27107	1724440	A077392
6	0	0	0	0	0	1	6	80	1995	112225	A077393
7	0	0	0	0	0	0	1	7	117	4210	A077394
8	0	0	0	0	0	0	0	1	8	164	
9	0	0	0	0	0	0	0	0	1	9	
10	0	0	0	0	0	0	0	0	0	1	

(A-numbers from http://www.research.att.com/~njas/sequences/)

Another NP-complete problem: k-sat

* n Boolean variables
* Boolean function f in CNF: consists of the "and" (\wedge) of a number of clauses
* each clause is the "or" (\vee) of k variables or their negations
\star e.g. $f(x)=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right)$
$\star k$-sat: find an assignment x of the variables such that $f(x)=1$
* useful for finding feasible points in scheduling problems etc.
* hard to find a solution, easy to verify a proposed solution
* 2-sat is easy, k-sat for $k>3$ can be reduced to 3-sat
\star therefore, we can use heuristics to find solutions

Random k-sat

* choose clauses randomly, with r being the ratio of the number of clauses to the number of variables
* recent (2002) big breakthrough: survey propagation by Mézard, Parisi \& Zecchina (http://www.sciencemag.org/cgi/content/ abstract/297/5582/812 and many other articles in Nature and Science): physics-inspired heuristic that works (at least for random 3-sat) even for $n>10^{5}$
\triangleright my experience: works worse than other heuristics on small, structured problems
* there is a phase transition near $r_{\mathrm{c}}=4.26$, where random 3 -sat jumps from being almost surely satisfiable to almost surely unsatisfiable

Random 3-sat phase transition

* I computed this with the survey propagation heuristic - 1000 variables x_{i}, 100 trials for each value of r :

Hamiltonian path problem

* find a path in a graph that visits every node once and only once
* NP-complete
\star can encode as a k-sat problem (Knuth Boolean Basics problem 40 - errors!) and use heuristic
* let $p_{u v}$ mean $u<v$ in a ordering of the nodes, and let $q_{u v w}$ mean $u<v<w$
* they express the constraints that consecutive nodes are adjacent (i.e. non-adjacent nodes (\sim) are non-consecutive)
* the graph has a Hamiltonian path iff the set of clauses on the next page is satisfiable
\star recall that $(\bar{x} \vee y) \equiv(x \Rightarrow y)$
夫 can we do Hamiltonian circuits this way?

Hamiltonian path encoding

$\star p_{u v} \vee p_{v u}$ for all pairs $u \neq v$ (i.e. either $u<v$ or $v<u$)
$\star \bar{p}_{u v} \vee \bar{p}_{v u}$ for all pairs $u \neq v$ (i.e. not both $u<v$ and $v<u$)
$\star \bar{p}_{u v} \vee \bar{p}_{v w} \vee p_{u w}$ for all pairs $u \neq v, u \neq w, v \neq w$
(i.e. $u<v$ and $v<w \Rightarrow u<w$)
$\star \bar{q}_{u v w} \vee p_{u v}$ for $u \nsim w($ i.e. $u<v<w \Rightarrow u<v$)
$\star \bar{q}_{u v w} \vee p_{v w}$ for $u \nsim w($ i.e. $u<v<w \Rightarrow v<w$)
$\star q_{u v w} \vee \bar{p}_{u v} \vee \bar{p}_{v w}$ (i.e. $\overline{u<v<w} \Rightarrow u>v$ or $v>w$)
$\star q_{u v w} \vee q_{w v u}$ for $u \nsim w$ and $\forall v \notin\{u, w\}$

* I wrote a python program to translate any given graph into these clauses and solve them with a satisfier
* http://www.research.att.com/~njas/sequences/A115065

The future

* work on making the practical algorithms faster, by using more efficient data structures etc.

夫 understand the accuracy of the θ bound

* what is the distribution of $\theta-\chi$ for standard ensembles of random graphs?
* study properties of special graphs arising in real applications -scale-free, unit-disk etc.
* understand the k-sat phase transition
* encode more real problems as k-sat
* see the book Perfect graphs (ed. J L Ramírez Alfonsín \& B A Reed) for lots more on applications to networks

