(This appendix is included merely as a historical curiosity. It was the
first article I ever wrote on the subject, and the one I still get most requests
for! It is [Briggs, 1989])

0.1 Introduction

The family of functions f, : R — R (dependent on the parameter a € R)
defined by the map
T — fo(z) = a— 2 (0.1)

has the property that there exist critical values a; of a, at which bifurcations
occur in the sets of limit points of sequences {z;} defined by the iteration

Tiy1 = fa(Ti), i=0,1,2,...; 7o < Va. (0.2)

If the set of limit points for a given a has n elements, we describe the iter-
ation as having an n-cycle. In other words, the sequence z; is asymptotically
periodic with period n. There exist cycles of each integer period [Keener,
1986]; amongst these we are especially interested in the superstable n-cycles,
that is, those that contain 0 as one of the cycle points. Since the maximum
of f occurs at 0, it follows that the stability

& df a (xz)
A(a) = || —— 0.3
=11 (03)
is zero at a superstable n-cycle.

Let a} be the least value of a at which a bifurcation to period 2¢ occurs. It
is known from the work of Feigenbaum [Feigenbaum, 1980d] that the sequence
;1 = o

5; = . i=2,3,4,... (0.4)

a; — iy
is convergent to a value § & 4.669. We describe in this note a direct method
of calculation of . Previous methods have either used a numerical search
for bifurcation values a;, which is unreliable because the limited precision
of computer arithmetic introduces artificial periods into the sequence zx;,
or methods using power series approximations [Feigenbaum, 1980d]. The
number ¢ is of interest in several physical and biological problems [Cvitanovié,
1984; Briggs, 1987] which are modelled by equation (0.1). For example, it
is equivalent to the logistic equation of population dynamics. Of course
in practice a few digits of & are sufficient. Nevertheless, the problem of
calculating § to many places has the same fascination as did the calculation
of 7 to earlier generations of mathematicians.
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0.2 The direct method

We consider the sequence of polynomials in a defined by

be(a) = a—[bp_1(a))?, k=1,2,3,... (0.5)
bo(a) = O. (0.6)

The following property makes these polynomials useful for our purposes.
Lemma 1 Let k =2". Then f, has a superstable k-cycle iff by(a) = 0.

The proof is trivial. Thus superstable 2"-cycles occur at zeros of byn. We
denote by a; the least parameter value at which a superstable 2*-cycle occurs.
Clearly a bifurcation value a; must occur between a;_; and a;. We conjecture
that the stars can be removed in equation (0.4) without change to the limit
0, although we do not attempt to prove this. We will instead calculate as if
0 were defined with superstable values a; in equation (0.4), and see whether
our ¢ agrees with that given by Feigenbaum.

Thus we can calculate § to arbitrary precision by locating zeroes of the
polynomials b;. For this purpose Newton’s method is satisfactory, so that
the complete method is:

a; = a; 1+ 5 , i1=2,3,4,.. (0.7)
i—1

.  boild?

o' = al -2 (“Zj), i=0,1,2,. (0.8)
Voi(ai)

b'k(a) = 1- 2b'k_1(a)bk_1(a), k= 1, 2, 3, (09)
a; = ]ll)rgo al (0.10)

Aj—1 — Gj—2
0; = 0.11
a; — Q51 ( )

1— 00

The first equation produces an initial approximation to the next superstable
a value, which is refined by the Newton iteration; by is the derivative of
bi. Thus ag is a sequence convergent to the ith zero of byi. The process
was programmed in Turbo Pascal version 4.0, using extended precision, and
started with aJ = 0;a = 1;b) = 0 and §; = 3.2.

The rate of convergence of appears to be roughly linear, so that about
one more significant decimal digit is gained every two iterations. The results
were:



i a_i delta_i

2 1.3107026413 3.21851142203809
3 1.3815474844 4.38567759856834
4 1.3969453597 4.60094927653808
5 1.4002530812 4.65513049539198
6 1.4009619629 4.66611194782857
7 1.4011138049 4.66854858144684
8 1.4011463258 4.66906066064834
9 1.4011532908 4.66917155537963
10 1.4011547825 4.66919515602875
11 1.4011551020 4.66920022907521
12 1.4011551704 4.66920131316059
13 1.4011551851 4.66920154839814

The algorithm depends on finding the correct zero by Newton’s method of
a high degree polynomial with many closely spaced zeros. Thus it will fail
if the initial approximation is not close enough to the required zero. This is
the limiting factor determining the maximum precision of the above results.

0.3 Feigenbaum’s «

If di, denotes the value of the nearest cycle element to 0 in the superstable
k-cycle, then the sequence

d
dia

o = , 1=1,2,3,... (0.13)
is convergent to a value about 2.502. This constant is most easily calculated
by realizing that the derivative b’ defined above must satisfy

. Vipi(aiyn) _

(To see this, consider the slope of the line joining successive ‘corners’ of
the graph of the figure.) Taking the calculation as far as by gave a =
2.502907875095.
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