Valiant's theory of the learnable

Keith Briggs

Keith.Briggs@bt.com
www.btexact.com/people/briggsk2

BT C> act

2003 April 141330

typeset 11th April 2003 14:05 in pdFIATEX on a linux system

Introduction

L G Valiant A theory of the learnable, Comm. ACM 27, 1134-42 (1984)

We want to learn an unknown Boolean function (predicate) F

- to do this in general would take exponential time - must test n-ary F for 2^{n} input combinations
- so we restrict F, and then can achieve polynomial time

Learning protocol

t Boolean variables $p_{1}, p_{2}, \ldots, p_{t}$
vector: $\{0,1, *\}^{t}$ ($*=$ undetermined). Total means no $*$ in vector We have available EXAMPLE()

- gives us a positive exemplification of F
- that is, an assignment of variables making F true
- for example, $F(p)=p_{1} p_{2}+p_{3}$

$$
\triangleright \operatorname{EXAMPLE}() \rightarrow(*, *, 1)
$$

$\triangleright \operatorname{EXAMPLE}() \rightarrow(1,1,0)$

and ORACLE (x)

- tells us if F is true for some given assignment x of variables
- for example:

$$
\begin{aligned}
& \triangleright \operatorname{ORACLE}(1,0,0) \rightarrow 0 \\
& \triangleright \operatorname{ORACLE}(0,0,1) \rightarrow 1
\end{aligned}
$$

Let D be a probability distribution on the set of vectors v such that $F(v)=1$

Learnability

A predicate is learnable if \exists an algorithm such that:

- it runs in polynomial time in t and in a parameter h
- with probability $1-1 / h$, the deduced predicate g never outputs 1 when it should not, but outputs 1 almost always when it should
$L(h, s)$ is defined (for $\mathbb{R} \ni h>0, s \in \mathbb{Z}^{+}$) as the smallest integer such that in L independent Bernoulli trials each with probability $1 / h$ of success, the probability of having fewer than s successes is less than $1 / h$
- For $s \geqslant 1$ and $h>1, L(h, s) \leqslant 2 h(s+\log h)$

h	s	$L(h, s)$	bound
10	2	38	86
10	5	78	146
10	10	140	246
100	2	662	1321
100	5	1157	1921
100	10	1874	2921

Finite CNF expressions

A conjunctive normal form (CNF) is a product of sums

- that is, an and of ors
- Valiant requires each clause c_{i} in a CNF to be a sum of literals, where a literal is either a variable p_{j} or a negation of a variable
- For example, $p_{2}+\overline{p_{3}}+p_{6}$ is a clause
- In a k-CNF, each clause contains at most k literals

Theorem A: for each $k>0$, any k-CNF is learnable via an algorithm that uses $L\left(h,(2 t)^{k+1}\right)$ calls of EXAMPLE and no call of ORACLE

Algorithm A

$g=$ product of all possible k-clauses

For $n=1,2, \ldots, L$

- $v=\operatorname{EXAMPLE}()$
- for each c_{i} in g
\triangleright if $v \nRightarrow c_{i}$, then delete c_{i} from g

DNF expressions

A disjunctive normal form (DNF) is a sum of products

- that is, an or of ands
- Valiant requires the DNF to be monotone, that is, no variable is notted
- For example, $p_{1} p_{3} p_{4}+p_{2}+p_{3} p_{6}$ is in DNF

Theorem B: any monotone DNF of degree d is learnable via an algorithm that uses $L(h, d)$ calls of EXAMPLE and $d t$ calls of ORACLE, where t is the number of variables

Algorithm B

$g=0$

For $n=1,2, \ldots, L$

- $v=\operatorname{EXAMPLE}()$
- if $v \nRightarrow g$, then for $i=1,2, \ldots, t$
\triangleright if p_{i} is determined in v (i.e. is not $*$), then
\diamond set v equal to \bar{v} but with $p_{i}=*$
\diamond if $\operatorname{ORACLE}(\bar{v})=1$ then $v=\bar{v}$
$\triangleright m=$ product of all literals q such that $v \Rightarrow q$
$\triangleright g+=m$

