How to count without counting

Keith Briggs

Keith.Briggs@bt.com

research.btexact.com/teralab/keithbriggs.html

Tempura seminar 2003 September 04 15:00

TYPESET 2003 SEPTEMBER 5 10:15 IN PDFIATEX ON A LINUX SYSTEM

The eprint

- ★ Loglog counting of large cardinalities
- ★ Marianne Durand and Philippe Flajolet
- ★ Engineering and applications track of the 11th Annual European symposium on algorithms (ESA 2003, Budapest Sept 15-20)
- ★ to be published by Springer, Lecture Notes in Computer Science
- * algo.inria.fr/flajolet/Publications/DuFl03.ps.gz

Algorithms

- ★ A precisely defined, provably correct (for valid inputs) computational procedure for a specific problem
- * Abu 'Abd Allâh Muḥammad ibn Mûsâ al-Khwârizmî

```
▶ born: about 780 in Baghdad
```

★ e.g. Euclid's algorithm for the greatest common divisor of two positive integers:

```
def gcd(x,y):
    while y:
        y,x=x%y,y
    return x
```

Types of computational procedure

★ deterministic algorithm

- always returns the same output for the same input
- output proved always correct
- always terminates in finite time
- involves no random (stochastic) steps

★ heuristic

- not proved to always return the correct result
- usually involves some 'rules of thumb' arbitrary but reasonable-looking steps
- > not proved to terminate in finite time
- an 'engineering' solution

★ stochastic algorithm

- output proved usually correct, within certain probabilistic bounds
- may involve random (stochastic) steps
- may be much faster than a deterministic algorithm for the same problem

A deterministic counting algorithm

- \star Problem: given a multiset M (a collection of objects, possibly with repeats), determine how many different objects there are in M
- ★ obvious algorithm:
 - set $D = \{\}$ (the empty set)
 - for each x object in M...

 > see if x is in D, and if not, add it to D
 - ullet count the numbers of elements in D, and return it
- \star D is a list which grows, so a lot of time is wasted in memory allocation \blacksquare
- \star as D becomes large, it becomes slower and slower to find whether a given x is in D
- ★ can we do better with a stochastic algorithm?

The Durand and Flajolet algorithm 1

- \star define $\rho(b_1b_2b_3...) \equiv \operatorname{argmin}_k\{k \text{ such that } b_k=1\}$
- \star choose parameter k (typically 10 to 16)
- $\star m = 2^k$, buckets $M_1, M_2, M_3, \ldots, M_m$, initialized to 0
- \star h= a hash function (e.g. 32 bits)
- \star for each word x in the file:
 - $\triangleright y = h(x)$
 - \triangleright j=value of first k bits of y
 - ightharpoonup l=value of last (hash size-k) bits of y
 - \triangleright set M_i to the maximum of M_i and $\rho(l)$

 \star size estimate is $E=m\left[\Gamma(-1/m)\frac{2^{-1/m}-1}{\log 2}\right]^{-m}2^{(\sum_j M_j)/m-1}$

The Durand and Flajolet algorithm 2

- \star buckets need to be only about $\log \log (n_{\text{max}})$ bits
- \star E is unbiased:
 - ▶ as $n \to \infty$, $< E > /n = 1 + \theta_1 + o(1)$ ▶ $|\theta_1| < 10^{-6}$
- \star the standard error S (the standard deviation divided by n) of E satisfies
 - \triangleright as $n \to \infty$, $S = \beta_m/\sqrt{m} + \theta_2 + o(1)$
 - $|\theta_2| < 10^{-6}$
 - $\triangleright \beta_m \approx 1.3$
- \star practical formula: $S \approx 1.3/\sqrt{m} = 1.3 \times 2^{-k/2}$
- \star an improved version has $S \approx 1.05 \times 2^{-k/2}$

The function ρ is easily implemented in C:

```
/* index of first 1 bit in x, counting from leftmost=0 */
unsigned int rho(int x) {
  for (int i=0; i<32; i++) {
    if (x<0) return i;
    x<<=1;
  }
  return 32;
}</pre>
```

Hash

In this context, a *hash function* is a mapping from $\{0,1\}^n$ to itself with the properties:

- ▶ it is bijective: injective (one-to-one) and surjective (onto)
- > it has high entropy (on average, close inputs map to distant outputs)

```
unsigned int hash(unsigned int x) {
    x += ~(x << 15);
    x ^= (x >> 10);
    x += (x << 3);
    x ^= (x >> 6);
    x += ~(x << 11);
    x ^= (x >> 16);
    return x;
}
```

Results 1: English dictionary

'aardvark aback abaft abandon abandoned abandoning abandonment abandons . . . '

Results 2: Darwin, Origin of species

'When on board H.M.S. Beagle as naturalist, I was much struck with certain facts in the distribution of the organic beings inhabiting South America,...'

Results 3: Hamlet

'To be, or not to be: that is the question: Devoutly to be wish'd. To die, to sleep;...'

Results 4: King Lear

'Kent: I thought the king had more affected the Duke of Albany than Cornwall. . . . '

Results 5: Julius Caesar

'Scene I. Rome. A street. Enter Flavius, Marullus, and certain Commoners. . . . '

Results 6: Rgveda

tvám agne dyúbhis tvám āśuśukṣáṇis tvám adbhyás tvám áśmanas pári; tváṃ vánebhyas tvám óṣadhībhyas tváṃ nṛṇāṃ nṛpate jāyase śúciḥ; távāgne hotráṃ táva potrám ṛtvíyaṃ táva neṣḍráṃ tvám agníd ṛtāyatáḥ . . .

Results 7: Pepys' diary

'17th. Up, and with my wife, setting her down by her father's in Long Acre, in so ill looked a place, among all the whore houses. . . '

Results 8: Y-chromosome (word=block of 16 codons)

'GAATTCTAGGCTTTCTTTGAAGAGGTAGTAATCTGTAGCCCTCACCTAGG. . . '

Conclusion

If approximate counts are sufficient, they may be obtained very rapidly, and with small, constant memory usage and with known standard error