How to count without counting

Keith Briggs

Keith.Briggs@bt.com
research.btexact.com/teralab/keithbriggs.html

BT(Exact

Tempura seminar 2003 September 04 15:00
typeset 2003 September 5 10:15 in pdfiATEX on a Linux system

The eprint

* Loglog counting of large cardinalities
* Marianne Durand and Philippe Flajolet
* Engineering and applications track of the 11th Annual European symposium on algorithms (ESA 2003, Budapest Sept 15-20)
* to be published by Springer, Lecture Notes in Computer Science
* algo.inria.fr/flajolet/Publications/DuFl03.ps.gz

Algorithms

* A precisely defined, provably correct (for valid inputs) computational procedure for a specific problem \|
* Abu 'Abd Allâh Muḥammad ibn Mûsâ al-Khwârizmî
\triangleright born: about 780 in Baghdad
\triangleright died: about 850
* e.g. Euclid's algorithm for the greatest common divisor of two positive integers:
def $\operatorname{gcd}(x, y)$:
while y :

$$
y, x=x \% y, y
$$

return x

Types of computational procedure

* deterministic algorithm
\triangleright always returns the same output for the same input
\triangleright output proved always correct
\triangleright always terminates in finite time
\triangleright involves no random (stochastic) steps
* heuristic
\triangleright not proved to always return the correct result
\triangleright usually involves some 'rules of thumb' - arbitrary but reasonable-looking steps
\triangleright not proved to terminate in finite time
\triangleright an 'engineering’ solution

太 stochastic algorithm
\triangleright output proved usually correct, within certain probabilistic bounds
\triangleright may involve random (stochastic) steps
\triangleright may be much faster than a deterministic algorithm for the same problem

A deterministic counting algorithm

* Problem: given a multiset M (a collection of objects, possibly with repeats), determine how many different objects there are in M
* obvious algorithm:
- set $D=\{ \}$ (the empty set)
- for each x object in M...

```
\triangleright ~ s e e ~ i f ~ x ~ i s ~ i n ~ D , ~ a n d ~ i f ~ n o t , ~ a d d ~ i t ~ t o ~ D ~
```

- count the numbers of elements in D, and return it
* D is a list which grows, so a lot of time is wasted in memory allocation II
* as D becomes large, it becomes slower and slower to find whether a given x is in D
* can we do better with a stochastic algorithm?

The Durand and Flajolet algorithm 1

\star define $\rho\left(b_{1} b_{2} b_{3} \ldots\right) \equiv \operatorname{argmin}_{k}\left\{k\right.$ such that $\left.b_{k}=1\right\}$

* choose parameter k (typically 10 to 16)
$\star m=2^{k}$, buckets $M_{1}, M_{2}, M_{3}, \ldots, M_{m}$, initialized to 0
$\star h=\mathrm{a}$ hash function (e.g. 32 bits)
* for each word x in the file:

```
\triangleright y =h(x)
\triangleright j = v a l u e ~ o f ~ f i r s t ~ k ~ b i t s ~ o f ~ y ~
\triangleright l = v a l u e ~ o f ~ l a s t ~ ( h a s h ~ s i z e - k ) ~ b i t s ~ o f ~ y ~
\triangleright ~ s e t ~ M ~ M ~ t o ~ t h e ~ m a x i m u m ~ o f ~ M ~ M ~ a n d ~ \rho ( l )
```

* size estimate is $E=m\left[\Gamma(-1 / m) \frac{2^{-1 / m}-1}{\log 2}\right]^{-m} 2^{\left(\sum_{j} M_{j}\right) / m-1}$

The Durand and Flajolet algorithm 2

* buckets need to be only about $\log \log \left(n_{\max }\right)$ bits
$\star E$ is unbiased:

$$
\begin{aligned}
& \triangleright \text { as } n \rightarrow \infty,<E>/ n=1+\theta_{1}+o(1) \\
& \triangleright\left|\theta_{1}\right|<10^{-6}
\end{aligned}
$$

* the standard error S (the standard deviation divided by n) of E satisfies

$$
\begin{aligned}
& \triangleright \text { as } n \rightarrow \infty, S=\beta_{m} / \sqrt{m}+\theta_{2}+o(1) \\
& \triangleright\left|\theta_{2}\right|<10^{-6} \\
& \triangleright \beta_{m} \approx 1.3
\end{aligned}
$$

* practical formula: $S \approx 1.3 / \sqrt{m}=1.3 \times 2^{-k / 2}$
\star an improved version has $S \approx 1.05 \times 2^{-k / 2}$

The function ρ is easily implemented in C :
/* index of first 1 bit in x, counting from leftmost=0 */
unsigned int rho(int x) \{
for (int $\mathrm{i}=0$; $\mathrm{i}<32 ; \mathrm{i}++$) \{ if $(x<0)$ return i;

$$
x \ll=1 ;
$$

\}
return 32;
\}

Hash

In this context, a hash function is a mapping from $\{0,1\}^{n}$ to itself with the properties:
\triangleright it is bijective: injective (one-to-one) and surjective (onto)
\triangleright it has high entropy (on average, close inputs map to distant outputs)
unsigned int hash(unsigned int $x)$ \{

$$
\begin{aligned}
& x+=\sim(x \ll 15) ; \\
& x^{\wedge}=(x \gg 10) ; \\
& x+=(x \ll 3) ; \\
& x^{\wedge}=(x \gg 6) ; \\
& x^{+}=\sim(x \ll 11) ; \\
& x^{\wedge}=(x \gg 16) ;
\end{aligned}
$$

return x;
\}

Results 1: English dictionary

’aardvark aback abaft abandon abandoned abandoning abandonment abandons . . .'

Results 2: Darwin, Origin of species

'When on board H.M.S. Beagle as naturalist, I was much struck with certain facts in the distribution of the organic beings inhabiting South America,. . .'

Results 3: Hamlet

'To be, or not to be: that is the question:
Devoutly to be wish'd. To die, to sleep;.. .'

Results 4: King Lear

./Shakespeare/KingLear

'Kent: I thought the king had more affected the Duke of Albany than Cornwall. ...'

Results 5: Julius Caesar

/Shakespeare/JuliusCaesar

'Scene I. Rome. A street. Enter Flavius, Marullus, and certain Commoners. . . .'

Results 6: Rgveda

../Rigveda/RV

tvám agne dyúbhis tvám āśuśukṣánis tvám adbhyás tvám áśmanas pári; tvám vánebhyas tvám óṣadhībhyas tvám nṛ̣̣ám nṛpate jāyase śúciḥ; távāgne hotrám táva potrám ṛtvíyam táva neṣdrám tvám agníd ṛtāyatáh . . .

Results 7: Pepys' diary

'17th. Up, and with my wife, setting her down by her father’s in Long Acre, in so ill looked a place, among all the whore houses. ..'

Results 8: Y-chromosome (word=block of 16 codons)

'GAATTCTAGGCTTTCTTTGAAGAGGTAGTAATCTGTAGCCCTCACCTAGG. . . ’

Conclusion

If approximate counts are sufficient, they may be obtained very rapidly, and with small, constant memory usage and with known standard error

