Optimization for power control

(Mostly from the book Convex Optimization by Boyd and Vandenberghe)

Keith Briggs

Keith.Briggs@bt.com more.btexact.com/people/briggsk2

CRG meeting 2004 June 03 1400

sodium:tex/optimization-2004may30.tex TYPESET 2004 JUNE 18 13:57 IN PDFLATEX ON A LINUX SYSTEM

Introduction

- ★ When you have to solve an optimization problem, the first step is always to work out to which class of problems it belongs
- ★ different problem types behave very differently
- \star different methods must be used for different problem types
- ★ never use a black-box solver it may fail, or at best be very inefficient

Convexity

minimize $f_0(x)$ subject to $f_i(x) \leq 0$ $a_j^T x = b_j$

- ★ objective is convex
- ★ feasible set is convex Ⅰ
- \star any local optimum is globally optimal 🛽
- ★ not necessarily smooth
- ★ quasiconvex also ok

Linear programming (LP)

minimize $c^T x + d$ subject to $Gx \leq h$ Ax = b

- \star convex 📕
- \star standard form

minimize $c^T x$ subject to $x \succeq 0$ Ax = b

- ★ convert using slack variables
- * other problems equivalent e.g. piecewise linear objective

Linear programming

- \star has elegant duality theory
- \star simplex method is fast and accurate
- \star can solve problems with 1M variables

Fractional linear programming (FLP)

 \star

minimize
$$\frac{c^T x + d}{e^T x + f}$$

subject to $e^T x + f \succeq 0$
 $Ax = b$

 \star if feasible set is nonempty and bounded, can convert to LP

minimize
$$c^T y + dz$$

subject to $Gy - hz \leq 0$
 $Ay - bz = 0$
 $e^T x + f = 1$
 $z \ge 0$

Quadratic programming (QP)

minimize
$$x^T P x + 2q^T x + R$$

subject to $Gx \preceq h$
 $Ax = b$

- \star *P* symmetric positive-definite
- \star is convex

*

- ★ e.g. least-squares
- \star e.g. distance between polyhedra

Second-order cone programming (SOCP)

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & \|A_i x + b_i\|_2 \leqslant c_i^T x + d_i \\ & F x = g \end{array}$

★ is convex

*

Robust LP

★ allow uncertainty in parameters

minimize $c^T x$ subject to $a_i^T x = b_i$

 \star example: $a_i \in \{ \overline{a}_i + P_i u \mid ||u||_2 \leq 1 \}$

 \star equivalent to

 \star

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & a_i^T x + \|P_i^T x\|_2 \leqslant b_i \end{array}$

★ i.e. SOCP

Robust LP - statistical version

 $\star~a_i$ iid Gaussians with known mean and variance \star

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & \mbox{Pr} \left[a_i^T x \leqslant b_i \right] > \eta \end{array}$$

 \star equivalent to

minimize $c^T x$ subject to $\overline{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \leq b_i$

★ i.e. SOCP

 \star e.g. portfolio optimization

Generalized fractional linear programming (GFLP)

minimize
$$t$$

subject to $Cx+d \leq t(Fx+g)$
 $fx+g \geq o$
 $Ax = b$

\star equivalent to

 \star

minimize
$$\max_i \frac{c_i^T x + d_i}{e_i^T x + f_i}$$

subject to $Gx \preceq h$
 $Ax = b$

★ is quasiconvex

Power control

- \star the transmitter power control problem is of GFLP type...
- \star where $x_i = P_i$, and other constants are related to SNR, path gain etc.
- ★ is quasiconvex
- \star is there a statistical version of this?
- \star is a distributed algorithm possible?