Mixing time of random walks on networks

Keith Briggs Keith.Briggs@bt.com
Joint work with Min Chen
research.btexact.com/teralab/keithbriggs.html
PICT seminar 2004 December 161500

typeset 2005 January 7 10:45 in pdfiATEX on a linux system

Outline

- What is a random walk?
- How do we quantify a random walk?
- Fastest mixing problem
- Computational results
- Applications

> mixing time \longrightarrow convergence speed
> fast mixing \longrightarrow fast convergence of dynamical process on network

Random walk

- $\Gamma(v)$: neighbors of v in G \|
$\nabla_{0} \xrightarrow{\text { random }} x_{1} \in \Gamma\left(x_{0}\right) \xrightarrow{\text { random }} x_{2} \in \Gamma\left(x_{1}\right) \xrightarrow{\text { random }} \ldots \xrightarrow{\text { random }} x_{k} \in \Gamma\left(x_{k-1}\right)$
- Example:
$\left\{v_{0} v_{1} v_{2} v_{0} v_{5} v_{4}\right\}$ is one instance of a random walk
$\left\{v_{0} v_{5} v_{4} v_{2} v_{3}\right\}$ is another instance of a random walk

Random walk and Markov chain

- Transition probability matrix P

$$
P_{i j}= \begin{cases}\operatorname{Pr}\left[x_{t+1}=j \mid x_{t}=i\right], & \text { if } i j \in E \\ 0, & \text { otherwise }\end{cases}
$$

- We can choose each node uniformly
$P_{i j}= \begin{cases}1 / d(i), & \text { if } i j \in E \\ 0, & \text { otherwise }\end{cases}$
where $d(i)$ is the degree of i

- distribution at $t: \quad \pi(t)=\pi(0) P^{t}$
- equilibrium distribution: $\pi=\pi P$

The approach to equilibrium

start a walk
plot $\log \|\pi(t)-\pi(\infty)\|$
vs. t

Statistical properties of random walks

- Example: London underground graph

Example: London underground graph

Example: London underground graph - hitting time

- Hitting time [LLOO]:

$$
H_{i j}=2 m \sum_{k=2}^{n} \frac{1}{1-\lambda_{k}}\left[\frac{v_{k i}^{2}}{d(i)}-\frac{v_{k i} v_{k j}}{\sqrt{d(i) d(j)}}\right]
$$

$\{\lambda, v\}$ is the eigensystem of $N=D^{1 / 2} A D^{1 / 2}, A$ is the adjacency matrix, $D=\operatorname{diag}(1 / d(i)), m$ is the number of edges in the graph \|

- the mean number of steps between King's Cross and Victoria is

$$
H_{k c-v}=H_{81}=38.5
$$

London underground graph - Hitting time matrix

0.0	12.7	30.1	24.9	36.1	58.8	47.5	49.7	31.2	30.0	46.5	45.0	25.4	20.9	25.9	13.9	50.8	31.3	43.4
28.1	0.0	21.3	20.1	32.6	55.4	44.4	47.4	29.6	29.8	49.6	51.4	35.0	39.8	18.5	11.8	47.7	35.1	40.8
40.6	16.4	0.0	11.0	27.0	50.5	40.0	44.7	28.7	29.9	51.3	54.5	39.7	48.3	26.6	11.5	43.9	37.3	38.8
51.1	30.9	26.7	0.0	19.5	43.5	33.7	40.1	25.8	28.1	50.9	55.7	42.3	54.9	32.7	9.3	38.1	37.5	34.7
58.4	39.4	38.7	15.5	0.0	26.4	18.9	32.5	25.4	30.3	54.0	59.6	47.1	61.0	39.0	13.3	26.5	41.9	30.9
60.3	41.5	41.4	18.8	5.7	0.0	10.5	27.8	24.4	30.8	54.8	60.7	48.5	62.6	40.8	14.8	30.8	43.3	33.8
60.2	41.7	42.2	20.1	9.4	21.6	0.0	21.1	21.5	29.2	53.5	59.7	47.9	62.2	40.6	14.3	33.1	42.7	34.7
58.8	41.1	43.3	23.0	19.4	35.4	17.6	0.	11.8	23.5	48.8	55.9	45.0	60.1	39.1	11.8	38.9	40.1	36.4
55.5	38.5	42.5	23.9	27.4	47.2	33.2	26.9	0.0	15.9	42.0	50.1	40.1	56.0	35.5	7.3	42.7	35.4	36.0
53.3	37.7	42.7	25.2	31.4	52.6	39.9	37.7	14.9	. 0	29.8	41.6	35.3	52.5	35.0	7.0	45.3	32.8	37.2
50.1	37.8	44.4	28.3	35.4	56.9	44.5	43.3	21.4	10.1	0.0	21.8	25.5	46.0	36.9	10.7	49.2	29.8	41.0
45.0	36.0	44.0	29.4	37.4	59.1	47.1	46.8	25.8	18.2	18.2	0.0	13.8	37.6	36.8	12.5	51.1	24.8	42.8
37.8	32.1	41.6	28.6	37.3	59.4	47.7	48.3	28.3	24.4	34.3	26.2	0.0	27.1	34.8	12.2	51.0	17.8	42.6
19.9	23.4	36.8	27.7	37.7	60.1	48.6	50.0	30.7	28.2	41.4	36.6	13.7	.	31.4	14.1	51.9	25.5	44.0
40.7	17.9	30.8	21.3	31.5	54.0	42.7	44.7	26.0	26.4	48.0	51.6	37.1	47.1).	5.9	45.3	33.7	37.1
51.3	33.7	38.4	20.4	28.4	50.7	39.0	40.0	20.3	21.0	44.5	49.8	37.1	52.4	29.5	0.0	41.0	30.2	31.5
58.0	39.5	40.6	19.2	11.5	36.5	27.6	37.0	25.7	29.2	52.8	58.3	45.8	60.1	37.8	10.9	. 0	40.0	16.5
45.6	33.9	41.0	25.5	33.9	56.0	44.3	45.2	25.3	23.7	40.4	39.0	19.6	40.8	33.1	7.1	47.0	0.0	38.1
55.7	37.6	40.5	20.8	21.0	44.6	34.3	39.5	24.0	26.1	49.7	55.1	42.5	57.3	34.7	6.4	21.5	36.1	0.0

London underground graph - commute time

- King's Cross $\underbrace{\text { rw }}_{\text {? steps }}$ Victoria $\xrightarrow{\text { rw }}$ King's Cross

- commute time [LLOO]

$$
k_{i j}=H_{i j}+H_{j i}
$$

- So we know that the commute time from King's Cross to Victoria then back to King's Cross is

$$
k_{k-v}=k_{81}=H_{81}+H_{18}=38.5+29.6=68.1
$$

- Symmetry
- $H_{i j} \neq H_{j i}$ unless i and j are vertex-transitive.
- $k_{i j}=k_{j i}$ for all i, j

London underground graph - mixing time

$>\underbrace{\pi(0) \rightarrow \pi(1) \rightarrow \cdots \rightarrow \pi}_{\text {? steps }}$

- mixing rate $=\log (1 / \mu(P))$
where $\mu(P)=\max _{i=2, \ldots, n}\left|\lambda_{i}(P)\right|=\max \left\{\lambda_{2}(P),-\lambda_{n}(P)\right\}$
- mixing time: $\tau=1 /($ mixing rate $)=1 / \log (1 / \mu)$
- mixing rate $=0.101568$
mixing time $=9.845655$
- build new lines
mixing rate $=0.168313$
mixing time $=5.941294$

Definition of random walk properties

hitting time (access time)	$H_{i j}$ is the expected number of steps in a random walk starting from node i and be- fore node j.	$2 m \sum_{k=2}^{n} \frac{1}{1-\lambda_{k}}\left[\frac{v_{k i}^{2}}{d(i)}-\frac{v_{k i} v_{k j}}{\sqrt{d(i) d(j)}}\right]$
commute time	$k_{i j}$ is the expected number of steps in a random walk starting at i, the first time return to i via j.	$H_{i j}+H_{j i}$
mixing rate	measure of how fast the random walk con- verges to its station- ary distribution.	$\rho=-\log (\mu(P))$

Fastest mixing graph problem

- fastest mixing (minimum mixing time) by changing topology
change the topology of the graph
fastest mixing chain
- Optimization description

$$
\begin{array}{ll}
\min _{G} & \mu(P(G)) \\
\text { s.t. } & P: \geqslant 0 \\
& P 1=1 \\
& P_{i j}= \begin{cases}1 / d(i), & \text { if } i j \in E \\
0, & \text { otherwise }\end{cases}
\end{array}
$$

Computational results - small regular graphs

- the min/max mixing time for 10 nodes regular graphs

n	deg	num	maxtime	graph	mintime	graph	avertime
10	3	17	15.5896		2.4663		6.8216
10	4	58	7.7220		1.7195		3.4093
10	5	59	7.4542		1.2427		2.2145
10	6	21	2.4663		0.9102	1.5722	
10	7	5	1.1802		1.0168		1.1475

The fastest mixing problem

- fastest mixing (minimum mixing time) by adjusting weights
fix the topology, changing the weights
\downarrow (reversible chain)
fastest mixing chain
- Optimization description

$$
\begin{array}{ll}
\min _{P} & \mu(P) \\
\text { s.t. } & P \cdot \geqslant 0 \\
& P 1=1 \\
& \Pi P=P^{T} \Pi \\
& P_{i j}=0, \quad i, j \notin E
\end{array}
$$

Fastest mixing problem - combined problem

- Fastest mixing chain both on topology and weights

- Optimization description

$$
\begin{array}{ll}
\min _{G} \min _{P(G)} & \mu(P) \\
\text { s.t. } & P \cdot 00 \\
& P 1=1 \\
& \Pi P=P^{T} \Pi \\
& P_{i j}=0, \quad i, j \notin E
\end{array}
$$

Small-world model $S W\{n, p\}$

- $S W\{n, p\}$ model: \|
n-node cycle $\Rightarrow\left\{m_{0}, m_{1}, \ldots, m_{k}\right\} \in$ Poisson distribution with mean $\bar{m}=\binom{n}{2} p \Rightarrow S W\left(n, m_{0}\right), \ldots, S W\left(n, m_{k}\right)$ \|

$\left\{\begin{array}{l}\{5,5,2,4,1\} \\ \end{array}\right.$

$S W\{6,1 / 5\}, \bar{m}=15 \times 0.2=3 \ldots$
- What is the relation between \bar{m} and mixing time?

Small-world $S W\{n, p\}$ - mixing time vs. links

Mixing time of the internet AS graph

- Internet AS graph [CAIDA] has about 10,000 nodes and changes topology constantly

AS mixing time

Mean shortest path of the AS graph

Diameter of the internet AS graph

Applications

- Information diffusion
--- How fast does information/virus/spam spread on the internet?
- Search engine (Google)
--- How fast can google rank the pages?
- Sampling problems
--- e.g. Markov chain Monte Carlo, distributed averaging

Diffusion

- Eigenvalues λ_{i} and eigenfunctions ϕ_{i}
- heat kernel

$$
H_{t}(x, y)=\sum_{i} \exp \left(-\lambda_{i} t\right) \phi_{i}(x) \phi_{i}(y)
$$

- satisfies

$$
\frac{d}{d t} f=-\mathcal{L}_{S} f
$$

- $H_{t}=\exp \left(-t \mathcal{L}_{S}\right)$
- this solves the diffusion problem

References

CAIDA data from sk-aslinks.caida.org/data/
R. Diestel, Graph Theory, Springer 2000
B. Bollobás, Random Graphs, CUP 2001
S. Boyd, P. Diaconis \& L. Xiao, Fastest Mixing Markov Chain on

A Graph
L. Lovász, Random walks on graphs: a survey (2001)

Fan Chung \& S-T Yau 2000 Discrete Green's functions
N. Biggs, Algebraic graph theory, CUP 1993
B. Bollobás, Modern graph theory, Springer-Verlag 2002

