Exact real arithmetic

Keith Briggs

Keith.Briggs@bt.com
http://more.btexact.com/people/briggsk2/xr-kent-talk-pp.pdf BT C°

University of Kent Computing Laboratory 2004 Feb 101400

Contents

Outline

- IEEE floating point
\triangleright Another floating point disaster
\triangleright Irrationals
Digit expansions
\triangleright What's the problem?
\triangleright Continued fraction arithmetic
- Scaled-integer representation
\triangleright Data flow in $\mathbb{X} \mathbb{R}$ system
\triangleright Some easy operations
- Addition and multiplication
\triangleright The big software challenge
\triangleright Algebraic number construction
- Transcendental functions
\triangleright Computable bounds
-My python implementation
- Lambdas
\triangleright Comparison
- Python implementation in action
- C $^{++}$implementation in action
\triangleright Features of my implementations
\checkmark Computational geometry application
\triangleright Simultaneous Diophantine approximation application
\triangleright Limitations
\triangleright Maths \Longleftrightarrow software
\triangleright Conclusion
- Bibliography

Outline

[eg what's the problem?
IEs representation and processing of reals
nes my implementation of the Boehm scheme
Ies applications
nes notation

```
\mathrm{ integers: }\mathbb{Z}={\ldots,-2,-1,0,1,2,\ldots}
\triangleright ~ r a t i o n a l s : ~ \mathbb { Q ~ = ~ \{ p / q ; ~ p , q \in \mathbb { Z } \} }
\triangleright \mathbb { R } \ \mathbb { Q } = \{ \text { algebraics } \cup \text { transcendentals \}}
\triangleright \lfloorx\rceil is the nearest integer to x
```


IEEE floating point

res finite set of rationals and approximate operations:

$$
\begin{aligned}
& \mathbb{F}=\left\{m 2^{e}:|m|<2^{53},|e|<1024, \text { NaN, Inf }\right\} \\
& \mathbb{O}=\{+,-, *, /\}, \text { round to even or nearest }
\end{aligned}
$$

ICs problems!

$$
\begin{aligned}
x_{0} & =\mathbb{F}(0.9) \\
x_{k+1} & =\mathbb{P}(3.999) * x_{k} *\left(1-x_{k}\right) \quad k=0,1,2, \ldots
\end{aligned}
$$

in $\mathbb{F}, x_{53}>0.5$, but the exact result is $x_{53}=0.130235874811773733039643730080570 \ldots$

Another floating point disaster

$$
\begin{aligned}
u_{0} & =e-1 \\
u_{k} & =k u_{k-1}-1 \quad k=1, \ldots, 25
\end{aligned}
$$

Irrationals

nes construction conventionally involves a limit of a sequence of rationals
\triangleright rate of convergence is not specified
\triangleright traditional digit expansions converge from below
\triangleright what about negative digits?
Ies other possibilities:
\triangleright symbolic dynamics of an expanding map
\triangleright continued fractions, Möbius maps, LFTs
\triangleright nested intervals with rational endpoints
\triangleright non-integer base - e.g. golden ratio
\triangleright does something even better exist?

We want a representation that allows the computation of more significant digits first

Digit expansions

$x \mapsto f(x)$ digit=branch number

What's the problem?

Lex example: find sign of one root $x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ of quadratic $a x^{2}+b x+c=0$

\triangleright input nodes don't know how much precision to send
\square all input nodes send data, even if it eventually may not be needed
\triangleright to recalculate requires the whole tree to be re-evaluated

Continued fraction arithmetic

$$
x=\left[x_{0} ; x_{1}, x_{2}, x_{3}, \ldots\right]=x_{0}+\frac{1}{x_{1}+\frac{1}{x_{2}+\cdots}}
$$

IEs studied by Gosper, Vuillemin, Liardet, Stambul, MénissierMorain, Potts

Ies only easy operation: $\frac{a x+b}{c x+d}$
for + ,* etc., inefficient for exp, sin etc., very inefficient! problem:

How do we convert inputs to cf form?

Scaled-integer representation (Bochm)

[®9 for $\widehat{x} \in \mathbb{R}$, consider a function $x: \mathbb{Z}^{+} \rightarrow \mathbb{Z}$ such that

$$
B^{n} \widehat{x}-x(n) \mid<1
$$

for fixed $B=2,3,4, \ldots$
$x: \mathbb{Z}^{+} \rightarrow \mathbb{Z} \Leftrightarrow x \in \mathbb{X} \mathbb{R}$
Ies in other words:

$$
\frac{x(n)-1}{B^{n}}<\widehat{x}<\frac{x(n)+1}{B^{n}}
$$

example: $\widehat{x} \in \mathbb{Q}, x(n) \equiv\left\lfloor B^{n} \widehat{x}\right\rfloor$
All computation with $\mathbb{X} \mathbb{R} s$ is reduced to large integer operations

Data flow in $\mathbb{X} \mathbb{R}$ system

Some easy operations

nes $|x|(n) \equiv|x(n)|$
nes $[-x](n) \equiv-x(n)$
$[\operatorname{sqrt}(x)](n) \equiv \sqrt{x(2 n)}$
fer for $m \in \mathbb{Z},[m x](n) \equiv\left\lfloor m x(n+p) / 2^{p}\right\rceil, p=1+\log _{2}|m|$
nes for $m \in \mathbb{Z}^{*},\lceil x / m\rfloor(n) \equiv\lfloor x(n) / m\rceil$
IR comparison: if for some $n, x(n)$ and $y(n)$ differ by more than 1, they are unequal
caching: $x(n)$ can be evaluated as $\left\lfloor x(m) / 2^{m-n}\right\rceil$ if $x(m)$ for $m>n$ is available

Addition and multiplication (for $B=2$)

$$
[x+y](n) \equiv\lfloor(x(n+2)+y(n+2)+2) / 4\rfloor
$$

$$
\begin{aligned}
& \left|[x+y](n)-2^{n}(\widehat{x}+\widehat{y})\right| \\
= & \left|\lfloor(x(n+2)+y(n+2)+2) / 4\rfloor-2^{n}(\widehat{x}+\widehat{y})\right| \\
\leqslant & 1 / 2+\left|(x(n+2)+y(n+2)) / 4-2^{n}(\widehat{x}+\widehat{y})\right| \\
= & 1 / 2+\left|x(n+2)+y(n+2)-2^{n+2}(\widehat{x}+\widehat{y})\right| / 4 \\
\leqslant & 1 / 2+\left|x(n+2)-2^{n+2} \widehat{x}\right| / 4+\left|y(n+2)-2^{n+2} \widehat{y}\right| / 4 \\
\leqslant & 1
\end{aligned}
$$

where
$r=\lfloor(n+2) / 2\rfloor, s=n+2-r, p=\left\lfloor\log _{2}|x(r)|\right\rfloor, q=\left\lfloor\log _{2}|x(s)|\right\rfloor$

Algebraic number construction

ITS given a polynomial p with integer coefficients, and integers $a, k>0$, we can compute the sign of p at a / B^{k} with only integer operations

```
def signat(p,a,k) : # return the sign of polynomial p at a/B^k
    n,w=len(p),p[0]
    for j in 1..n:
        w*=a
        w+=p[j] *B^(k*j)
    return w>0
```

thus, given a bracketed root:

$$
\operatorname{sign} p\left(a / B^{k}\right)<0, \quad \operatorname{sign} p\left(b / B^{k}\right)>0
$$

we may refine it by bisection to any desired accuracy

Transcendental functions

Les $f=\exp$, arctan, sin etc. can be computed if we can implement an approximating function $\tilde{f}: \mathbb{Q} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}$ such that

$$
B^{n} f(q)-\tilde{f}(q, n) \mid<1
$$

[5] we need approximating functions which give us a priori error bounds
lse or, at least, error bounds must be computable in rational arithmetic
for π, use

$$
\pi=\sum_{n=0}^{\infty}\left[\frac{4}{8 n+1}-\frac{2}{8 n+4}-\frac{1}{8 n+5}-\frac{1}{8 n+6}\right] \frac{1}{16^{n}}
$$

\exp

ITs easy to get $\exp (x)$ with bounded absolute error if we know $|x|<1$: use Padé approximants:

$$
\max _{|x|<1}\left|e^{x}-R_{n / n}(x)\right| \leqslant \frac{8(n!)^{2}}{(2 n)!(2 n+1)!}
$$

\triangleright we can't test $|x|<1$!. . .
\triangleright but we can safely find k such that $\left|\widehat{x} / 2^{k}\right|<1$

The big software challenge

```
Produce efficient software which hides the bottom-up data flow and can be used by a programmer as if it were conventional top-down code
```

Ies needed features:
$\triangleright \lambda$ anonymous function constructor
\triangleright operator overloading
not easily possible in Fortran, C, java, . . . easy in python, Haskell, clean, ML, ocaml possible in $\mathrm{C}^{++!}$(with tricks)

My python implementation

www. python. org
nes 'perl done right'
nes much cleaner syntax than java
res portable (Linux, Unix, Mac, . . . , Windows)
res functional features - lambda, map, filter, reduce
nes operator overloading
free

Lambdas

def $+(x, y)$:
\# compute the sum of x and y for $B=2$
return lambda $n:(x(n+2)+y(n+2)+2) / 4$
def sqrt(x):
\# compute the square root of x for $\mathrm{B}=2$
return lambda n: sqrt (x ($2 * \mathrm{n}$))
ITS possibility of distributed computation: a lambda may be executed remotely

Comparison

This is a system for proving inequalities

. . . but, equality is undecidable
def $<(\mathrm{x}, \mathrm{y})$:
\# return true if $x<y$, false if $x>y$, else don't return
n=1
while 1:

$$
\begin{aligned}
& \text { if } x(n)<y(n)-1: \text { return true } \\
& \text { if } x(n)>y(n)+1: \text { return false } \\
& n+=1
\end{aligned}
$$

def max (x, y) :
\# compute the maximum of x and y without comparison return $(x+y+a b s(x-y)) / 2$

Python implementation in action

$>$ import XR
$>\mathrm{e}=\exp (\mathrm{XR}$ (1))
$>$ print contfrac (e)
$[2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14]$
$>$ print $\cos (2 *$ pi () /7) $\cdot \operatorname{dec}(50)$
0.62348980185873353052500488400423981063227473
$>$ print polyroot ([8, 4, -4, -1] , 0, 1, 0) .dec (50)
0.62348980185873353052500488400423981063227473
$>x=X R(Q(1,3))$
$>$ for i in range (10):
print $2 * x>1$
$\mathrm{x}=4 * \mathrm{x} *(1-\mathrm{x})$
0101011001

C++ implementation in action

\#include "XR.h"

```
int main() {
    XR e=exp(XR(1));
    cout<<contfrac(e);
    cout<<cos(2*pi()/7).dec(50);
    ZZ coeffs[]={8,4,-4,-1};
    cout<<polyroot(coeffs,0,1,0).dec(50);
    x=XR(Q (1,3));
    for (int i=0; i<10; i++) {
        cout<<2*x>1;
        x=4*x*(1-x);
    }
}
```


My C implementation

ITs more.btexact.com/people/briggsk2/xrc.html
portable ISO C
Uses pointers to construct DAG representing compositions of lambdas
[19) Function call ust be written for every arithmetic operation ${ }^{+++}$wrapper

Features of my implementations

res python, $\mathrm{C}^{++}, \mathrm{C}$
[193 all integer arithmetic, using gmp
nes automatic caching of all intermediate results
Ies easily integrated with existing code
nes C, C++ versions are fully compiled
[1] possible application areas:
\triangleright computational number theory
\triangleright computational geometry
\triangleright computer-assisted proofs in analysis
\triangleright computer algebra

Computational geometry application

IRS Simple planar example: line through $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$; is the point $\left(x_{0}, y_{0}\right)$ to the left or right of the line?

This is determined by $\operatorname{sign}\left(\left[\left(y_{1}-y_{0}\right)\left(x_{2}-x_{1}\right)-\left(x_{1}-x_{0}\right)\left(y_{2}-y_{1}\right)\right]\right)$
With $\mathbb{X} \mathbb{R}$ arithmetic, the sign is always determined correctly and with the minimal necessary computation

Simultaneous Diophantine approximation application
IG 3 typical subproblem: given

```
x},\mp@subsup{x}{2}{},\mp@subsup{x}{2}{}\in\mathbb{R
p
\triangleright e _ { 1 } = | q x _ { 1 } - p _ { 1 } \| , e _ { 2 } = | q x _ { 2 } - p _ { 2 } |
```

les determine whether $e_{1}>e_{2}$
\triangleright very efficiently solved in XR with trivial coding by user
ाबड is $\exp (\pi \sqrt{163})$ an integer?
$\mathrm{x}=\exp (\mathrm{pi} * \operatorname{sqrt}(\mathrm{XR}(163)))$
print $\mathrm{x}>\mathrm{floor}(\mathrm{x})$ \# prints 'True'

Limitations

एes memory demands
nes non-incrementality
Les the floor function does not terminate on integer inputs
Tes transcendental functions still incomplete
ne no verified decimal output

Mathematics $\stackrel{?}{\Longleftrightarrow}$ software

IEs mathematics \Longrightarrow mathematical software
\triangleright Numerical analysis
\triangleright Statistics
\triangleright Computer algebra
\triangleright Computational number theory
\triangleright Combinatorics and graph theory
\triangleright Finite groups
\triangleright Theorem proving
\triangleright. . .
what about the other direction?

Conclusion

res it's worth rethinking how we represent numbers and do arithmetic
nes lots of future work possible:
\triangleright granularity - automatic choice for B?
\triangleright optimize caching strategy
\triangleright log, sin, cos etc.
\square non-functionat - graph method
\triangleright parallel and multi-threaded techniques
\triangleright characterize the set $\mathbb{X} \mathbb{R}$
\triangleright complexity analysis (not assuming each $*$, + etc. has the same cost)

Bibliography 1

[e] H-J Boehm, R Cartwright, M Riggle, and M J O'Donnell: Exact real arithmetic: A case study in higher order programming dev.acm.org/pubs/citations/proceedings/lfp/319838/p162-boehm/

Ve V Ménissier-Morain: Arithmétique exacte, conception, algorithmique et performances d'une implémentation informatique en précision arbitraire Paris thesis 1994 calfor.1ip6.fr/~vmm/

J R Harrison: Theorem proving with the real numbers Cambridge thesis 1996 uws.ftp.cl.can.ac.uk/ftp/papers/reports/

P Potts: Exact Real Arithmetic using Möbius Transformations WWw . purplefinder.com/~potts/

Bibliography 2

[e] Computability and Complexity in Analysis Network www.informatik.fernuni-hagen.de/import/cca/

ए® K Weihrauch: Computable Analysis
wWw.informatik.fernuni-hagen.de/import/thi1/klaus.weihrauch/book.html
ITs P Liardet and P Stambul: Algebraic Computations with Continued Fractions www.idealibrary.com/links/doi/10.1006/jnth.1998.2274

K M Briggs: XR homepage more.btexact.com/people/briggsk2/XR.html;
This talk: more.btexact.com/people/briggsk2/xr-kent-talk-pp.pdf

