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Abstract

I discuss the design and performance issues arising in the efficient implementation of
the scaled-integer exact real arithmetic model introduced by Boehm and others. This
system represents an real number with a automatically controlled level of precision
by a rational with implicit denominator. I describe three practical codes, in python,
C++ and C. These allow the convenient use of this computational paradigm in
commonly-used imperative languages.

Key words: Exact real arithmetic
PACS:

1 Introduction

The set of real numbers equipped with the operations of addition and multipli-
cation R is defined axiomatically as the (unique up to isomorphism) complete
ordered field. That is, R is a field possessing an order relation <, in which every
subset with a upper bound has a least upper bound. This definition, however,
is noticeably non-constructive: we are given no explicit representation of any
real except 0 and 1; we are given no algorithms for the field operations + and
x, and no algorithm to test the order relation <. This state of affairs repre-
sents a considerable challenge to computer scientists: how do we represent this
uncountable set on a machine with finite storage resources, and how do we
implement the field operations? The conventional answer is a floating point
representation: some finite set of rationals F together with round-off rules for
substituting a nearby member of ' whenever the result of an operation is not
in F. But other answers are possible: for example, iIRRAM [Miil04], in which
an automatic back-tracking method is used to control precision.
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These heuristics are certainly sufficient for most scientific computation, but it
should be noted that the emphasis is usually on accuracy of the field opera-
tions, and this comes at a price: the correctness of the order relation is not
guaranteed. In some areas of application, the latter may be critical: com-
putational number theory, computational geometry and computer-assisted
theorem-proving in analysis are some examples of such areas. Thus, I sug-
gest that an appropriate definition of an exact real arithmetic system is one
in which the truth value of the order relation is always correctly computed.
In fact, it is sufficient to impose the requirement that for any computed result
x, the test x > 0, whenever it completes in finite time, returns ‘true’ or ‘false’
correctly. (We will see later that in typical exact real systems, that if in fact
x = 0, this test will never return.) We may thus view such a system as a
method of proving suspected inequalities between computed quantities.

One would like exact real arithmetic to be implemented in a way that is com-
pletely transparent to the programmer. Because of the backtracking require-
ment, a functional language is usually considered necessary, and implementa-
tions of varieties of exact real arithmetic in HOL [Har98], Miranda [Pot99],
Haskell [Les01], OCAML [Fil04], and Mathematica [And01] have been de-
scribed. Though these are all theoretically very elegant, they suffer from two
practical drawbacks: potentially poor efficiency (though this is a minor issue in
the latest langauges), and difficulty of embedding in existing software. Avoid-
ing these disadvantages imposes severe, but not insurmountable, demands on
the software designer. Thus, I have chosen to produce an implementation in
better-known languages: python, and C++ using an add-on functional library.
[ will show that exact real arithmetic is also possible (and is indeed most ef-
ficient) in C. The user thus has a choice:

e python: easiest to use, good for algorithm development, but slow

e C++: intermediate ease-of-use and speed, slow compilation time

e C: requires function calls for each arithmetic operation (though this can be
hidden with a thin C++ wrapper), best performance.

In this paper I will survey some existing theory, before focussing on the scaled-
integer representation and describing the practical implementations. The ul-
timate aim is a fast package for exact real arithmetic, which non-experts will
find easy to use. The codes are documented and distributed at [Bri02,Bri03].

2 Previous work

We consider throughout that we are working on a computing system that
provides integer (and hence rational) arithmetic for arbitrarily large integers,
and that the underlying representation is binary. The problem is to represent,



and operate on, the fractional part of numbers, which may be irrational and
therefore will not have a finite representation.

In a pioneering hakmem, [Gos72] considered continued fractions and defined
algorithms for stream arithmetic on such representations; these have been fur-
ther developed in [Vui90,MM94,1.S98|. The consensus is that although such
a system can be made to work, it is not efficient, for the following reasons.
Firstly, the ‘digits’ x; (partial quotients) are generically 1 with frequency about
48%, but can be arbitrarily large. Thus large integer arithmetic must be pro-
vided for, which is not used most of the time. Secondly, the outputs of the
algorithms are not normalized, containing a large amount of redundant infor-
mation, in the form of zero partial quotients. A normalization algorithm can
be provided, but introduces extra inefficiencies. A method closely related to
continued fractions is that of Mébius (linear fractional) maps [Pot99].

Some other theoretically interesting representations which have been consid-
ered but seem to suffer one or more practical limitations include: radix repre-
sentations with negative digits, non-integral or irrational bases such as 2/3 or
the golden ratio, and nested sequences of rational intervals. Details of these
may be found in [Esc00]. [And01] has used a Cauchy sequence representation
with rational terms and an explicit modulus of convergence function. This
approach is likely to suffer the common problem of any system using rational
numbers, namely the typical explosive growth of the numerators and denom-
inators.

3 The present implementations

[BCROS86| introduced another representation, which is not a radix representa-
tion, but a scaled-integer representation. Boehm et al. suggested representing
areal & € R by a function x : ZT — 7Z satisfying

| B"&—=x(n)|<1 VnelZ, (1)
where B > 2 is some fixed integer. In other words, Z is sandwiched as:

z(n)—1 -5 :L‘(n)—l—l.

Bn B @)

Note that the ~ is on the number, not the function, hinting that I will eventu-
ally regard the function as more fundamental. Thus, z(n) is an integer close to
a scaled multiple of our real number. The system is non-incremental, meaning
that each improved approximant x(n+1) contains all the information in z(n),
as well as addditional information. B represents the granularity of our system
- larger values of B cause information to grow at a greater rate as n increases,



at the possible cost of spending time getting more information than actually
needed. An important advantage of this representation is that less precise val-
ues may be efficiently computed from more precise ones by simple bit-shifting
(if B is a power of two). This makes caching (memoizing) of the most precise
known value of all intermediate quantities worthwhile; some requests are then
satisfied from the cache. Comparison is also easy: if we can find a value of
n such that x(n) and y(n) differ by more than one, then z and y must be
unequal.

Boehm et al. gave algorithms for the basic arithmetic operations, and demon-
strated that a lazy stream implementation in Lisp is possible. Note that a
language supporting higher-order functions is required since the algorithms
typically take two functions as input, and construct and return a new func-
tion representing the output.

[IMM94] significantly extended the theory of scaled-integer representations,
giving proofs of correctness for all the basic algorithms, and adding new al-
gorithms for transcendental functions. This representation looks potentially
very efficient, since all operations reduce to large-integer arithmetic, for which
fast libraries are available. I now summarize the results of Ménissier-Morain
which I use in my implementation. A rational ¢ is correctly represented by
q(n) = [ B™q]. This allows us to initialize exact reals from exact integer or
rational data. We consider that exact reals should never be initialized from
inexact data such as IEEE doubles; this is explicitly prevented by the absence
of such a constructor.

B B2
if 2 < B < 4. To give a flavour of the proofs, I show the correctness of the ad-

dition algorithm for the case B = 2, which makes it clear that ‘+2’ expresses
the additional precision required to satisfy the definition:

Addition is defined by [z+y](n) = {ww if B > 4, and by {ww

| [z+yl(n)=2"(@+7) [=] [ (x(n+2)+y(n+2)+2) /4] -2"(2+7) |
<1/24| (z(n+2)+y(n+2))/4—2"(Z+7) |
=1/2+| 2(n+2)+y(n+2)—2""*(2+7) | / 4
<1/2+]| z(n+2)— 2"+25|/4
+ly(n+2)-2""gy| /4
<1

Note that only one large-integer addition is needed here, and if B is chosen
as a power of 2, then the truncated division may be done very efficiently by
right-shifting.

Multiplication is defined by [zxy](n) = {%L where p and ¢ are given
by:
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B D q

2 max (n—msd(y)+4, |(n+3)/2]) max(n—msd(z)+4, |[(n+3)/2])
3 max (n—msd(y)+3, |(n3)/2]) max (n—msd(x)+3, [(n+3)/2))
>4 max (n—msd(y)+2, [(n+2)/2]) max(n—msd(z)+2, [(n+2)/2])

and the most significant digit, msd(x) is defined as msd (z) = min,ez(|z(n)| >
1). Again, only one large-integer operation is needed. Similar algorithms ex-
ist for reciprocal, division, nth roots, sign and absolute value, and have been
described and proved correct in [MM94]. She also gives algorithms for some
transcendental functions such as exp, log, arctan, which I will discuss later. The
only remaining operations required for practical purposes are output conver-
sion, and construction of a general algebraic number.

3.1 Algebraic number construction

Not tackled in the existing literature for any of the varieties of exact real
arithmetic is the construction of a general algebraic number, that is, a root of
polynomial p with integer coefficients. The special case of nth roots is easy:
we may define /" by the function y given by

ke [(x(kn))t"],

and the floor z of the nth root of the integer x(kn) may be very efficiently
computed by the all-integer variant of Newton’s iteration:

z e [(n=1)z+|a(kn) /2" |)/n].

I found the following method to be effective for the general case: given p and
integers a, B > 0,k > 0, we can compute the sign of p at a/B* with only
integer operations by scaling the polynomial coefficients:

n

p(a/BY) = Y pi (a/ BY) = B Y (BH6p,) ot

i=0
Thus,

signp(a/B*) =signy_(B~**")p,) a
i=0
I consider an algebraic number to be defined by p and a rationally bracketed
root with the brackets having the same denominator:

sign p(a/B*) signp(b/B*) < 0.



Given such we may refine it by bisection to the accuracy necessary to satisfy
the bounds in equation (2). This is implemented in my software. An integer
version of Newton’s method may be possible and could be even better here.

3.2 General features of the functional implementations

I have built two separate implementations (generically called XR), in python
[vR02] and C++. Both internally use only integer arithmetic, and are designed
to be easily integrated with existing code. The C++ version is fully compiled,
and at least an order of magnitude faster than the python version; the actual
efficiency achieved will be compiler-dependent. Both versions define a class Q
representing rational numbers.

Just one functional feature is required: lambda, an anonymous function con-
structor. This is supported directly in python, and in C++ via the FC+-+
library [MS03]. Implementation would also be possible in perl, but few lan-
guages other than these three have all the required features of object-orientation,
first-class functions, lambdas and operator overloading.

3.3  The python implementation

The python implementation has the great virtue that most algorithms trans-
late directly and transparently into python code. Python provides large integer
support as a built-in. I define a class XR, and overload all operators to operate
on instances of this class. An outline of the class definition should make the
basic idea clear:

class XR:
B=2
def __init__(s,x):
if type(x) is IntType:
s.data=Q(x)
else:
s.data=x
def __call__(s,n):
return s.data(n)

Note that s refers to ‘self’, the object instance itself. The addition and square
root algorithms appear as (for B = 2):



def __add__(x,y):
return lambda n: (x(n+2)+y(n+2)+2)/4

def sqrt(x):
return lambda n: sqrt(x(2*n))

and comparison is computed by:

def cmp(x,y):
n=0
while 1:
xn,yn=x(n),y(n)
if xn<yn—1: return —1 # => a<y
if xn>yn+1: return 1 # => 2>y
n+=1

A general feature of all exact real systems is that equality is undecidable. Thus,
for example, the statement XR(1)+XR (1) < XR(2) will loop forever. This is un-
avoidable since the < operator sees only function values, and is unaware of the
full definition of the functions representing its left and right arguments. Inter-
estingly, though, since the absolute value function is computable, computation
of the minimum and maximum, and thus sorting, is possible:

def minmax(x,y):
s,d=x+y,abs(x—y)
return (s—d)/2,(s+d)/2

3.4  The C++ implementation

The python version just described is useful, but slow, mainly due to the in-
terpreted nature of that language. However, it forms a useful testbed for al-
gorithm development, and having been verified in this way, an exact real al-
gorithm may be easily translated into the faster C++ version to be described
now.

C++ is not normally viewed as a functional language. However, it is possible
to use overloading of the () operator (which means making the object callable,
in the style of an ordinary function) to create a callable object and thus achieve



the desired effect of emulating a lambda anonymous function constructor. To
achieve this in a way that is convenient for the programmer to use is possible,
but not simple. Of several attempts at this I have selected the FC++ library
by [MS00]. I will briefly describe the features of this library which make it
particularly appropriate for implementing exact real arithmetic.

FC++is alibrary for functional programming in C++. McNamara and Smarag-
dakis call FCH++ functions functoids. These are strongly typed, in the spirit
of C++, but polymorphism is possible. FC++ provides higher-order polymor-
phic operators like compose, map and filter, which generally follow Haskell
syntax, supports currying with bind operators, and has the Lisp-like list op-
erators head, tail and cons. Using FC++ makes it possible to write a C++
class, which I call XR, which a programmer may use transparently in a tradi-
tional C++ style, without being aware of the functional concepts being used
internally. This feature is of great advantage if a small calculation in exact
real arithmetic needs to be embedded in a large, possibly pre-existing, C+-+
project.

The basic lambda type needed for exact real arithmetic may be defined in
FC++ as a unary function from a four-byte hardware integer (int) to a large
integer type (Z), for which I have used NTL’s ZZ type [Sho02], which in turn
is built on gmp’s mpz_t type [Gra02]. The latter provides a very efficient low-
level C implementation of large integer arithmetic, from which I build a class
Q representing rational numbers. Using FC++, the basic class definition for
XR with constructors initialized from several different types looks in outline
like this:

typedef Funl<int,Z> lambda;
typedef CFunType<int,Z> XRsig;
class XR: public XRsig {
public:
lambda x;
XR(): x(makeFun1(Q(0))) {}
XR(const int xx, const int yy=1): x(makeFunl(Q(to_Z(xx),to_Z(yy)))) {}
XR(const Z& xx): x(makeFunl(Q(xx))) {}
XR(const Q& xx): x(makeFunl(xx)) {}
XR(const lambda xx): x(xx) {}
Z operator() (const int n) const { return x(n); }

¥

The required overloaded operators may be programmed quite simply, with the
addition of helper functions (which are not used directly by normal users). For
example, the addition operator becomes:



class AddHelper: public XRsig {
XR f; XR g;
public:
AddHelper(const XR& ff, const XR& gg): {(ff), g(gg) {}
Z operator()(const int n) const {
return (f(n+2)+g(n+2)+2)>>2;

}
h
struct XRADD: public CFunType<XR, XR, AddHelper> {
AddHelper operator() (const XR& f, const XR& g) const {
return AddHelper(f,g);
}
} XRadd;
XR operator+(const XR& x, const XR& y) {
return memo(XRadd(x,y));

}

Note the memo, which provides caching of the computed value. Though this
code might seem convoluted in comparison to the python version, all internal
details are hidden in the file XR.h and thus need not concern the user.

3.5 The C implementation

Since exact real arithmetic changes the semantics of the elementary arith-
metic operations, an implementation in C might seem impossible. However,
by providing functions for each operation, we may build a dependency graph
(a directed acyclic graph, or DAG) in which each node contains pointers to
its argument(s), a description of the operation, and a cache for the largest ar-
gument with which the function has been called and the correspondig return
value. In my implementation, a node looks like this:

enum op {rat,abs,neg,sqrt,recip,iadd,isub,imul,subi,divi,add,sub,mul,sqr,div,root,ex

struct node { /* internal representation of an exact real */
node* x; /* left operand */
node* y; /* right operand */
enum op f; /* operation */
mpz_t cache; /* cache */
int maxn; /* cache high-water mark */

p.pi};




The special node type rat indicates a terminal node of the DAG, that is, a
rational number. mpz_t is gmp’s large-integer type. Functions f are provided
in the library for each operation, which internally work in exactly the same
way as has been described for the C++ implementation. sqr represents the
squaring operation, and exp the exponential function, the only transcendental
function at present implemented. However, the lower-level nature of C means
that many internal optimizations can be carried out, and the resulting code is
typically about 10 times faster then the C++ version, and at least 100 faster
than the python version. Actually timings are highly problem-dependent. The
complete code is documented and distributed at [Bri03].

3.6 Some applications

A standard test example is a quadratic map of the interval [0, 1), for example
o = 0.9; 241 = 3.999z(1—2x), k = 0,1,2,... In IEEE double floating point,
the computed x53 is less than 1/2, but the correct result is greater than 1/2.
The complete program (which prints ‘1’ and where ‘Q(p,q)’ constructs the
rational p/q) for this example is:

from XR import *
a=XR(Q(3999,1000))
x=XR(Q(9,10))

for k in range(53): x=a*x*(1—x)
print 2*x>1

[And01] gives the example of the computation of 100 decimals of (1—cos x)/x?
where x = 1071%° which fails in Mathematica 4.2 with the default floating
point settings. In my python implementation all that is required is:

from XR import *
x=XR(Q(1,10%¥100))
print ((1—cos(x))/x**2).dec(100)

An interesting example to test the exp, 7, and\/ functions is to evaluate the

fractional part of exp (m/163), which is non-zero, though this cannot be de-
termined with IEEE double floating point. The non-zero result obtained with
XR is in fact a proof that this quantity is non-integral.

A computational geometry example is to test whether the point (xg,yo) is to
the left or to the right of the line through (z1,y1), (72, y2). This is determined
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by sign ((y1 —yo)(x2—x1) — (21—20)(y2—y1)) , which floating point systems can
compute with the wrong sign in bad cases. With exact real arithmetic, the sign
is always determined correctly and with the minimal necessary computation.

A more significant application is to Diophantine approximation algorithms
[Bre81] and related procedures such as the LLL algorithm (see, for example,
[Coh93]). In these algorithms a critical step involves a branch decision made
on the basis of comparing two almost equal irrational quantities. Thus, a
typical subproblem is: given x1, 2, € R and large integers pi,ps2,q € Z, and
defining e; = |qx1—p1|, e2 = |qra—p2|, is €1 > ey or not? The algorithm
will have already chosen pq, p2, ¢, to make ey, e as small as possible. In exact
real arithmetic such a decision is always correctly made, in contrast to floating
point of any fixed precision, in which the algorithm will eventually take the
wrong branch when it ‘runs out’ of precision in z; and xs.

4 The future

The codes described are already practical and efficient. However, there is much
scope for future work in this field, both theoretical and practical. For example,
what is the optimum value of B? Could the code choose this itself with some
heuristics? By relaxing equation (1), can we extend the real numbers in some
useful ways? For example, the Kronecker delta function d(n) has some of the
properties of an infinitesimal.

Finally, one might ponder the fact that mathematical software has until now
been designed to mirror existing mathematical structures; why should this
situation not be reversed? If existing structures (such as the axiomatic reals)
are not computationally convenient, why should we not replace our structures
with those that are convenient?
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