Modelling internet round-trip time data

Keith Briggs

Keith.Briggs@bt.com

http://research.btexact.com/teralab/keithbriggs.html

University of York 2003 July 18

typeset 2003 July 15 $\,$ 13:55 in $IAT_{E}X2e$ on a linux system

Modelling internet round-trip time data 1 of 18

Outline

- motivation
- data 🛽
- theory **I**
- model fitting

Motivation

- internet as a complex system
- round-trip time (RTT) data forms an intriguing time series
- successful models would allow:
 - ▷ forecasting
 - ▷ simulation
 - understanding
- any model used should incorporate features believed to exist in the data in a *natural* way

Raw data 1

100 days of typical raw data, from www.edinburgh.ac.uk

Raw data 2

www.edinburgh.ac.uk and www.chem.uwa.edu.au

Long-range dependence?

• definition:

$$\lim_{k\to\infty} \ \rho(k) \ k^{2(1-H)} = \text{constant}$$

- $0<\alpha=2(1\!-\!H)<1$ [
- useless!
 - ▷ for stationary process only
 - ▷ large-k limit
 - ▶ H cannot be estimated in practice even when it exists and is known
 - ▶ tries to reduce complex phenomena to a single number

Wavelet transform 1

- I use the Haar basis - left: scaling function $\phi \mbox{; right: wavelet function } \psi$

$$\psi_{j,k}(t) = 2^{j/2} \psi(2^{j}t - k)$$

$$\phi_{j,k}(t) = 2^{j/2} \phi(2^{j}t - k)$$

Wavelet transform 2

$$f_t = \sum_k U_{0,k} \phi_{0,k}(t) + \sum_{j=0}^J \sum_k W_{j,k} \psi_{j,k}(t)$$

wavelet coefficients, $W_{j,k}$, and scaling coefficients, $U_{j,k}$, are defined by

$$W_{j,k} = \sum_{t=1}^{T} f_t \ \psi_{j,k}(t)$$
$$U_{j,k} = \sum_{t=1}^{T} f_t \ \phi_{j,k}(t)$$

Example wavelet transform 1

Example wavelet transform 2

Information at scales J, J-1 and J-4

Multifractal spectrum

• g is Lipschitz α at x_0 if α is the supremum of those a such that in a neighbourhood of x_0

$$g(x) - p_{\lfloor\beta\rfloor}(x) \mid = \mathcal{O}(\mid x - x_0 \mid^a)$$

where $p_{\mid \alpha \mid}$ is a polynomial of degree $\lfloor \alpha \rfloor$

• Let $f(\alpha)$ be the Hausdorff dimension of the set of points where the Lipschitz exponent is α . This is the *multifractal spectrum* of g

• example:

- ▷ fractal Brownian motion has zero mean and Gaussian increments s. t. the mean square increment at lag Δ is proportional to $|\Delta|^{2H}$
- ▷ this is a monofractal $f(\alpha) = \delta(H)$
- however, estimates of f from a finite sample will not show this delta function behaviour

The multifractal formalism 1

- to estimate $f(\alpha)$ from discrete data, use partition function $\tau(q)$
- For a process X(t), define the *structure function*, $S_j(q)$, by

$$S_j(q) = \sum_{k_j} (2^{-j/2} U_{j,k_j})^q$$

where U_{j,k_j} are Haar scaling coefficients for X(t)

• The partition function is then defined as

$$\tau(q) = -\lim_{j \to \infty} \frac{1}{j} \log S_j(q)$$

Next define

$$f_L(\alpha) = \inf_{q \in \mathbb{R}} (q\alpha - \tau(q))$$

The multifractal formalism 2

• The multifractal formalism shows that

 $f(\alpha) \leqslant f_L(\alpha)$

The Legendre transform of the partition function is the concave hull of $f(\alpha)$. $f_L(\alpha)$ is known as the Legendre spectrum

• Let us assume that our RTT data is a sample of an underlying continuous process. Assume further that the observable scaling behaviour of $S_j(q)$ is continued beyond the finest measured scale to the limit $j \to \infty$. That is,

 $S_j(q) \approx 2^{-j\tau(q)}$

over $j = j_1, ..., j_2$, where $j_1, j_2 \in [0, J]$

- $\tau(q)$ can be estimated from the gradient of a plot of $\log_2 S_j(q)$ against j over a finite range of scales

Riedi's multifractal wavelet model

- Riedi and others have proposed a stochastic variant of this type of multifractal model
- We let the wavelet coefficients from one scale to the next be iid random variables

▶ for example, from the Beta distribution

- Fitting to data then involves estimating the parameters in the distribution
- simulating involves drawing random variates from the fitted distribution
- determinism and preprocessing
 - Always remove any clear deterministic features from the data first:
 - ▷ trends
 - periodic components
 - ▷ baseline shifts

Example data analysis

HMWM, β MWM and www.chem.uwa.edu.au multifractal spectra

Realizations

 2^{12} points from www.chem.uwa.edu.au (top) compared with a $\beta {\rm MWM}$ realisation (bottom)

Autocorrelation

www.chem.uwa.edu.au, HMWM, and β MWM autocorrelation

Conclusion and references

- There are many open questions in this type of work and few concrete models
- Fitting and parameter estimation is a major problem
- Full report and bibliography:
 - Analysis and simulation of internet round-trip times