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Abstract—We consider beamforming with large-
scale antenna arrays in which the elements can
transmit only in one of a small number of phase-
shifts. This creates an NP-hard optimization prob-
lem, namely the maximization of the ratio of two
Hermitian quadratic forms, with the state vector
constrained to the set of allowed phase-shifts. We
show how the maximization problem can be rig-
orously solved by reformulating it as a sequence
of quadratic (but non-convex) minimization prob-
lems. These minimization problems can be solved
exactly with integer linear programming when suf-
ficiently small. When they are large there is no
good classical solution method, but we show that
they can be solved using quantum computers of the
annealing type. Not only is there a large improve-
ment in solution time with quantum computing,
there is also the potential for energy saving.

Index Terms—Multi-element antenna arrays,
MIMO, beamforming, quantum computing.

I. Introduction
In this paper, we consider an abstraction of an

antenna array as a collection (not necessarily pla-
nar) of isotropically radiating point elements. These
might represent active elements fed from cables, or
passive elements used in either reflective or trans-
missive mode. Our inspiration is the recent use of
PIN diode arrays for reflecting or focussing millimetre-
wave beams. These are currently opening up a cheap,
simple, and reliable new technology with important
new applications in propagating millimetre-wave sig-
nals beyond the usual line-of-sight restrictions.

II. Mathematical formulation
The computation of the far-field signal generated

by an array of radiating elements is standard; see,
for example, Chapter 3 in [1]. For beamforming, it
is necessary to define an optimization problem with

an appropriate objective function. A good option is
to define a small connected region R on the surface
of a large sphere surrounding the array, and try
to maximize the ratio of energy flux through R to
energy flux over the whole sphere S (or, optionally,
not through R). Note that this does not explicitly
constrain the undesired side-lobes.

We base our work on the formulation of Oliveri et al.
[2], but extend it fully into three dimensions (rather
than just a half-space), and also choose R to be a
circular patch, rather than the vertical projection of a
planar square patch onto the sphere as used by Oliveri
et al. This formulation results in a maximization
problem of the type

max
w

wHAw

wHBw
. (1)

Here w is a complex vector, and A and B are Hermi-
tian positive-semidefinite matrices defined by surface
integrals over R and S respectively. A and B are
functions of the array geometry, beam azimuth and
elevation, and beam angular diameter. If w is un-
constrained, this maximization problem can be easily
solved by finding the largest eigenvalue λmax of the
generalized eigenvalue problem Aw=λBw, and the
corresponding eigenvector wmax is the desired steering
vector. A typical solution obtained this way is shown
in Figure 1 (left).

Suppose now that the elements of w can take only
a small number (we consider only two or four) of
fixed, pre-specified values. We will focus on the case
in which the fixed values have modulus one, and thus
refer to the 2-phase or 4-phase cases. This restriction
models the case of PIN diodes mentioned above. One
PIN diode creates two possible phase shifts, and a
layer of two diodes creates four phase shifts. We
also optionally allow a perfectly reflecting backplane,
which is modelled by placing virtual elements on



Fig. 1. (left) Beamforming using an 16×16 array of continuously weighted elements, with backplane; exact solution via
eigenvalues. The elements are spaced a half-wavelength apart, and are situated in the x−y plane, with the backplane (yellow) a
quarter of a wavelength below. The beam polar angle is 0.7 radians, relative to the vertical dotted line (z-axis), and the beam
azimuth is 2. The spectral colours roughly represent the gain, which in this case peaks at 27.1dB on the boresight, with the peak
shown in red. Because the figure is a 3d projection onto 2d with transparency of the beam, an exact mapping of colours to gain is
not possible. (right) The same problem with the weights constrained to the four constant-amplitude phase-shifts {1, j,−1,−j};
approximate solution with Metropolis heuristic. The peak gain is only slightly reduced to 25.1dB, but the beamwidth is similar.
The colour scale is the same as in the left figure.

the opposite side of the plane to the real elements.
Solving (1) under such constraints is now an NP-hard
combinatorial optimization problem. An equivalent
integer linear programming problem can be written
down, but only solved in practice with a maximum
number of array elements of about 40, even in the 2-
phase case. Experience shows that computation times
grows exponentially with array size.

III. Solution technique

The objective in (1) is the ratio of two positive con-
vex functions. The whole problem is quasiconvex, and
as such a bisection method is applicable, as described
in [3, p. 145]. Let us first consider a more general
form, with positive convex functions f(x), g(x), both
mapping Rn to R, and C some constraint set (typically
C={0, 1}n):

max
x∈C

f(x)
g(x) . (2)

This is precisely equivalent to

min
t∈R

t such that f(x)−tg(x)<0 ∀ x∈C. (3)

Note that f(x)−tg(x) is non-convex, even though f

and g are convex. To start the bisection, we first need
to bound the optimal t. For the antenna problem, the
initial bounds (t0, t1)=(0, 1) will always work; we will
be defining f(x)=xTAx and g(x)=xTBx with A is
defined by an integral over a smaller region than B,
and so the optimal t cannot be greater than unity. One
bisection step then involves setting a trial t half-way
between current the bounds (t0, t1), and solving the
minimization problem

min
x∈C

f(x)−tg(x). (4)

If the optimal value of expression (4) is positive, then
it follows that the trial t is too small, so we can
raise the lower bound to t0 =t. Conversely, if the
optimal value is negative, we set t1=t. Bisection can
be stopped when the interval (t0, t1) is sufficiently
small. Note that during the minimization process, the
finding of any positive value for f(x)−tg(x) means
that the constraint in (3) is violated, and this allows
us to abort the minimization early and make the
correct decision t0 =t. This means that a heuristic



minimization method can be safely used for updating
the lower bound. This is, however, not the case for
upper bound updates, so these steps, whether done by
integer linear programming or otherwise, are typically
slower.

IV. Applying the solution technique to
antenna arrays

The quantum computing technique we will be using
requires the optimization variable x to be a bit-vector,
containing only the values 0 or 1. We map these to
complex weights by an affine map; in the 2-phase
case this takes the form wi=αxi+β for appropriate
complex constants α and β. In the 4-phase case the
map is similar, but uses two bits for each element of
the weight vector. The optimization problem now has
the following slightly more general form for an antenna
array with n elements, and the bisection method still
applies. In this form all parameters (a, c∈Rn, b, d∈R),
variables, and function values are now real:

max
x∈{0,1}n

xTAx+aTx+b
xHBx+cTx+d. (5)

For this objective, the specific form of (4), which forms
the constraint in (2), is now

min
x∈{0,1}n

xT (A−tB)x+(a−tc)T x+b−d. (6)

Note that a linear term like aTx can be absorbed
into the diagonal elements of A, since x2

i =xi for 0-
1 vectors. The constant terms defined by b and d are
simple shifts which make no essential difference to the
solution procedure. Figure 1 (right) shows a solution
obtained by this method.

V. Classical and quantum annealing

The possibility of using quantum computing now
arises because quantum annealing machines such as
D-Wave can solve quadratic minimization problems
of the type in (6). Here we think of x as a vector of
‘spins’, and an expression such as xTAx as a total
system energy. We try to find the ground (lowest
energy) state of the system. An introduction to such
techniques is in [4], and a recent evaluation of the state
of the art is in [5]. This problem-type is often called
QUBO, for ‘quadratic Boolean optimization’ [6].

However, before describing how we have imple-
mented this, we point out that a approximate sim-
ulation of the D-Wave machine on a conventional

computer is useful to confirm the correctness of the
implementation, and in fact is reasonably effective in
its own right as a solution method. This is simply
the well-known Metropolis algorithm. It proceeds by
picking one of the spins at random, and computing
the change in total system energy if this bit were
‘flipped’ (that is, the values 0 and 1 are interchanged).
If this energy changed is negative, the new bit value
is accepted, and the step is complete. Otherwise, the
flip is accepted with some small probability (say, 1%).
This probably can be reduced over time, to simulate
‘freezing’ of the system.

VI. Results using D-Wave quantum
annealer

Using both a simulated annealer and the D-Wave
Advantage [7] Quantum Processing Unit (QPU), we
could find solutions for much larger antenna arrays
than via integer linear programming, which in the 4-
phase case is very slow for antenna arrays with more
than 5×5 elements.

For small problems, for which we can compute
an exact discrete solution for comparison, we found
that slight differences in the resulting weight vector
had negligible effect on beam-width and gain. For
problems too large to be solved exactly, we can there-
fore have confidence that this method finds solutions,
which if not necessarily globally optimal, are still very
adequate for practical use. Any deviation from the
true optimal solution can be justified by the enormous
time saving from using heuristic solution methods.

It is difficult to define meaningful comparisons of
classical and quantum solution times. In the current
state of the art, using the quantum computer typically
requires far more time preprocessing the problem (on
a conventional computer) in order to prepare it for
the QPU, than actual solution time. Thus, the total
time taken to solve large problems using D-Wave was
very long, and was in fact comparable with the time
taken to find an exact solution using integer linear
programming. Solving for the weight vector which
generated Figure 2 (right) took around 90 minutes,
compared to the approximately 30 seconds needed
classically. However, breaking down the timings for
the D-Wave process, we see that for the beam in
Figure 2 (right) each annealing step took no more than
20µs. This is much faster than would be possible clas-
sically; the same problem using simulated annealing
on a typical desktop computer takes times of the order



Fig. 2. (left) Beamforming using a 7×7 array of 4-phase elements, with backplane, azimuth=2, polar angle=0.25. The constant-
amplitude phase-shifts were {1, j,−1,−j}, and the problem was solved by classical simulated annealing. (right) The same problem
solved with the D-Wave quantum annealer. The small differences are due to the heuristic nature of the annealing process, meaning
that slightly different (but still close to optimal) weights are found.

of seconds. However, at the current state-of-the-art
in quantum annealing, these timing comparisons are
not very meaningful. As well as timing improvement,
there is a large potential for the energy consumed by
the solution process to be reduced; and this is an area
of much current research, in the BeGREEN project
(acknowledged below) and elsewhere.

These experiences illustrate well a current problem
with quantum annealing. Before D-Wave can begin an
annealing process, each optimization variable needs to
be ‘embedded’ (mapped) onto a qubit in the QPU.
Embedding the minimization problem for each bi-
section step using the D-Wave automatic embedding
function took a very long time, resulting in the sig-
nificant increase to the overall run-time. It is likely
that by using a manual embedding of the problem this
time difference could be lessened. A potential line for
further study would be to consider the embedding for
each bisection step and look for patterns which could
be exploited to minimize the number of embeddings
that needed to be done. However, as the matrices
resulting from this problem are dense, it is likely that
solving this embedding problem will not be trivial.
We conclude that further research is needed to make
quantum annealing practical for large (say, 16×16
elements, 4-phase) antenna-array problems.

VII. Conclusion
We have shown how the fractional quadratic max-

imization problem arising in optimizing antennas
beams can be reformulated as a sequence of quadratic
minimization problems for which several solution
methods exist. Most importantly, the quadratic mini-
mization problems are of the type directly solvable on
quantum annealers. The main novelty of this paper
is showing that this reformulation is a transformation
into an exactly equivalent sequence of optimization
problems, and it puts the problem into a form ideally
suited to the quantum annealer. This method is shown
to work well in principle and provides a significant
improvement on the size of problems which can be
solved, compared to exact solution methods. However,
with the presently available D-Wave technology, the
embedding problem is a serious bottleneck for large
problems and awaits better solution methods.
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