Graph models of wireless networks

Keith Briggs keith.briggs@bt.com

Mobility Research Centre
BT Innovate
http://keithbriggs.info

University of Essex Maths 2009-02-05 1400 Corrected version 2009-02-06

BT Research - Adastral Park

Wireless networks

▶ PPPP(λ): planar Poisson point process

- ▶ PPPP(λ): planar Poisson point process
 - region R has $\operatorname{Poi}(\lambda \|R\|)$ points

- ▶ PPPP(λ): planar Poisson point process
 - region R has $Poi(\lambda ||R||)$ points
 - numbers in non-overlapping regions are independent

- ▶ PPPP(λ): planar Poisson point process
 - region R has $Poi(\lambda ||R||)$ points
 - numbers in non-overlapping regions are independent
 - \blacktriangleright pdf of distance X to $k{\rm th}$ nearest neighbour ($k{=}1,2,3,\dots$) is (Haenggi)

$$f_k(x) = \frac{2(\lambda \pi)^k}{\Gamma(k)} \exp(-\lambda \pi x^2) x^{2k-1}$$

- ▶ PPPP(λ): planar Poisson point process
 - region R has $Poi(\lambda ||R||)$ points
 - numbers in non-overlapping regions are independent
 - ▶ pdf of distance X to kth nearest neighbour (k=1, 2, 3, . . .) is (Haenggi)

$$f_k(x) = \frac{2(\lambda \pi)^k}{\Gamma(k)} \exp(-\lambda \pi x^2) x^{2k-1}$$

 \blacktriangleright mean distances are $\frac{1}{2}\lambda^{-1/2},\frac{3}{4}\lambda^{-1/2},\frac{15}{16}\lambda^{-1/2},\dots$

- ▶ PPPP(λ): planar Poisson point process
 - region R has $Poi(\lambda ||R||)$ points
 - numbers in non-overlapping regions are independent
 - ▶ pdf of distance X to kth nearest neighbour (k=1, 2, 3, . . .) is (Haenggi)

$$f_k(x) = \frac{2(\lambda \pi)^k}{\Gamma(k)} \exp(-\lambda \pi x^2) x^{2k-1}$$

- \blacktriangleright mean distances are $\frac{1}{2}\lambda^{-1/2},\frac{3}{4}\lambda^{-1/2},\frac{15}{16}\lambda^{-1/2},\dots$
- also binomial PP
- also nonhomogeneous case

$PPP(\lambda)$: radial generation

```
► s=0

► do

s \leftarrow s - \log(\mathsf{Uniform}(0,1))
\theta = 2\pi \mathsf{Uniform}(0,1)
r = \sqrt{s/(\pi\lambda)}
x = r \cos \theta
y = r \sin \theta
```

ightharpoonup while r desired maximum radius

▶ take PPPP(λ); call them *nodes*

- ▶ take PPPP(λ); call them *nodes*
- ightharpoonup connect nodes separated by less than ρ by *links* or *edges*

- ▶ take PPPP(λ); call them *nodes*
- ightharpoonup connect nodes separated by less than ho by *links* or *edges*
- degree of a point (not necessarily a node) is defined as the number of Poisson points in its disk

- ▶ take PPPP(λ); call them *nodes*
- ightharpoonup connect nodes separated by less than ho by *links* or *edges*
- degree of a point (not necessarily a node) is defined as the number of Poisson points in its disk
- distribution of degree is Poisson

- ▶ take PPPP(λ); call them *nodes*
- ightharpoonup connect nodes separated by less than ho by *links* or *edges*
- degree of a point (not necessarily a node) is defined as the number of Poisson points in its disk
- distribution of degree is Poisson
- ▶ degree (D_0, D_1) of an edge is the degree of its end nodes

- ▶ take PPPP(λ); call them *nodes*
- ightharpoonup connect nodes separated by less than ho by *links* or *edges*
- degree of a point (not necessarily a node) is defined as the number of Poisson points in its disk
- distribution of degree is Poisson
- ▶ degree (D_0, D_1) of an edge is the degree of its end nodes
- ▶ the cluster coefficient is $1 \frac{3\sqrt{3}}{4\pi}$

- ▶ take PPPP(λ); call them *nodes*
- ightharpoonup connect nodes separated by less than ho by *links* or *edges*
- degree of a point (not necessarily a node) is defined as the number of Poisson points in its disk
- distribution of degree is Poisson
- ▶ degree (D_0, D_1) of an edge is the degree of its end nodes
- ▶ the cluster coefficient is $1 \frac{3\sqrt{3}}{4\pi}$
- surprisingly, the degree-degree correlation is the same, independently of λ and ρ !

$\mathsf{GRG}(20, \rho)$ degree-degree distribution

$\mathsf{GRG}(\lambda, \rho)$ degree-degree correlation

▶ If $X_0 \sim \operatorname{Poi}(\lambda_0)$, $X_1 \sim \operatorname{Poi}(\lambda_1)$, $X_2 \sim \operatorname{Poi}(\lambda_1)$ are independent, and $Y_1 = X_1 + X_0$, $Y_2 = X_2 + X_0$, then

$$\operatorname{corr}(Y_1, Y_2) = \frac{\lambda_0}{\lambda_0 + \lambda_1}$$

$\mathsf{GRG}(\lambda, \rho)$ degree-degree correlation

▶ If $X_0 \sim \operatorname{Poi}(\lambda_0)$, $X_1 \sim \operatorname{Poi}(\lambda_1)$, $X_2 \sim \operatorname{Poi}(\lambda_1)$ are independent, and $Y_1 = X_1 + X_0$, $Y_2 = X_2 + X_0$, then

$$\operatorname{corr}(Y_1,Y_2) = \frac{\lambda_0}{\lambda_0 + \lambda_1}$$

► For PPPP, degree-degree correlation is E[corr]

$$= \int_0^\rho \frac{2\rho^2 \arccos(x/(2\rho)) - (x/2)\sqrt{4\rho^2 - x^2}}{\pi \rho^2} \frac{2x}{\rho^2} dx$$

$$= 1 - 3\sqrt{3}/(4\pi) \simeq 0.5865$$

$\mathsf{GRG}(\lambda, \rho)$ degree-degree correlation - square

exact (doable but
messy); simulation

$\mathsf{GRG}(\lambda, \rho, \mathsf{unit} \; \mathsf{circle})$: degree distribution

▶ pdf of distance of a random point from the centre, given that it is within $1-\rho$ of the edge:

$$f_{\rho}(x) = \frac{(4-2\rho)x + 2\rho - 2}{\rho^3 - 2\rho^2 + 2\rho} [1 - \rho < x < 1]$$

$\mathsf{GRG}(\lambda, \rho, \mathsf{unit} \; \mathsf{circle})$: degree distribution

▶ pdf of distance of a random point from the centre, given that it is within $1-\rho$ of the edge:

$$f_{\rho}(x) = \frac{(4-2\rho)x + 2\rho - 2}{\rho^3 - 2\rho^2 + 2\rho} [1 - \rho < x < 1]$$

 \blacktriangleright area of overlap of circles radius 1 and ρ , centres x apart:

$$A(x) = \rho^{2} \arccos\left(\frac{x^{2} + \rho^{2} - 1}{2x\rho}\right) + \arccos\left(\frac{x^{2} - \rho^{2} + 1}{2x}\right) - \frac{1}{2}[(1 - x + \rho)(x + \rho - 1)(x - \rho + 1)(x + \rho + 1)]^{1/2}$$

$\mathsf{GRG}(\lambda, \rho, \mathsf{unit} \; \mathsf{circle})$: degree distribution

▶ pdf of distance of a random point from the centre, given that it is within $1-\rho$ of the edge:

$$f_{\rho}(x) = \frac{(4-2\rho)x + 2\rho - 2}{\rho^3 - 2\rho^2 + 2\rho} [1 - \rho < x < 1]$$

 \blacktriangleright area of overlap of circles radius 1 and ρ , centres x apart:

$$A(x) = \rho^{2} \arccos\left(\frac{x^{2} + \rho^{2} - 1}{2x\rho}\right) + \arccos\left(\frac{x^{2} - \rho^{2} + 1}{2x}\right) - \frac{1}{2}[(1 - x + \rho)(x + \rho - 1)(x - \rho + 1)(x + \rho + 1)]^{1/2}$$

- ► $\operatorname{Prob}[d=k]=$ $(1-\rho)^2\operatorname{Poi}(A(x),k)+\rho(2-\rho)\int_{1-\rho}^1\operatorname{Poi}(A(x)\lambda)f_{\rho}(x)\mathrm{d}x$
- where $Poi(\mu, k) = e^{-\mu} \mu^k / k!$

$\mathsf{GRG}(\lambda, \rho, \mathsf{unit} \; \mathsf{circle}) \; \mathsf{degree} \; \mathsf{distribution}$

exact; simulation; Poisson - ignores edge effect.

lacksquare $\{X_1,X_2,\ldots,X_n\}$ iid, $\Pr[X_i=k]=e^{-\lambda}\lambda^k/k!$

- $\blacktriangleright \{X_1, X_2, \dots, X_n\}$ iid, $\Pr[X_i = k] = e^{-\lambda} \lambda^k / k!$
- $M_n = \max(X_i)$

- $\blacktriangleright \{X_1, X_2, \dots, X_n\}$ iid, $\Pr[X_i = k] = e^{-\lambda} \lambda^k / k!$
- $M_n = \max(X_i)$

The distribution of the maximum of Poisson variables for $\lambda=1/2,1,2,5$ (left to right) and $n=10^0,10^2,10^4,\ldots,10^{24}$

▶ Anderson: $\exists I_n \in \mathbb{Z} \text{ s.t. } \Pr[M_n \in \{I_n, I_n + 1\}] \rightarrow 1$

▶ Anderson: $\exists I_n \in \mathbb{Z} \text{ s.t. } \Pr[M_n \in \{I_n, I_n + 1\}] \rightarrow 1$

▶ Kimber: $I_n \sim \log n / \log \log n$ as $n \rightarrow \infty$

- ▶ Anderson: $\exists I_n \in \mathbb{Z} \text{ s.t. } \Pr[M_n \in \{I_n, I_n + 1\}] \rightarrow 1$
- ► Kimber: $I_n \sim \log n / \log \log n$ as $n \to \infty$

The maximal probability (with respect to I_n) that $M_n \in \{I_n, I_n + 1\}$ for $\lambda = 1/2, 1, 2, 5$ (left to right) and $10^0 \leqslant n \leqslant 10^{40}$. The curves show the probability that M_n takes either of its two most frequently occurring values.

$$M_n \sim x_0 \equiv \log n / W\left(\frac{\log n}{e \, \lambda}\right)$$

- $M_n \sim x_0 \equiv \log n / W\left(\frac{\log n}{e \, \lambda}\right)$
- $M_n \sim x_1 = x_0 + \frac{\log \lambda \lambda \log(2\pi)/2 3\log(x_0)/2}{\log(x_0) \log \lambda}$

- $M_n \sim x_0 \equiv \log n / W\left(\frac{\log n}{e \, \lambda}\right)$

Roman networks

Anglo-Saxon networks

