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Abstract

In this thesis I study some generalizations of Feigenbaum’s discovery of scaling
in families of nonlinear discrete dynamical systems. [ first make a precise com-
putation of the Feigenbaum constants for unimodal real maps. This allows me
to study number-theoretic properties of these quantities. I then make a detailed
study of the asymptotic limits of the feigenvalues as the degree of the maximum
of the unimodal map goes to infinity. The result is the first precise computation
of the asymptotic feigenvalues. I also generalize the Feigenbaum scaling law to
compute corrections to scaling in real maps. In the next chapter I consider scaling
in complex analytic maps. The results here include a complete classification of
the possible feigenvalues up to degree eight. [ construct a complex version of the
thermodynamic formalism, which allows a computation of the Hausdorff dimension
of attractors of universal functions. I also study scaling in the area of hyperbolic
components of the Mandelbrot set. The next chapter concerns circle maps, includ-
ing scaling on the boundaries of Siegel disks of complex analytic maps. I compute
corrections to scaling in circle maps, and the asymptotic limit of the Feigenbaum-
Kadanoff-Shenker scaling constant, followed by a discussion of Manton-Nauenberg
scaling and corrections to scaling. I next move to higher dimensions with a study
of scaling in two-torus maps. This requires some introductory discussion of cubic
number field theory. This chapter contains the first evidence for scaling in two-
torus maps. [ give next a detailed discussion of iteration of quaternion maps. This
is an attempt to see which properties of complex analytic maps continue in the
four-dimensional space of quaternions. In particular, I classify all regularly iter-
able linear quaternion maps. A final chapter describes the design of algorithms for
the solution of functional equations which were used throughout the thesis.

Keith Briggs, 1996 December 25.

Department of Physics,

University of Western Australia
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Preface

Versions of some parts of this work were published during the writing of this thesis.
These are § 2.1, § 2.3, § 3.1, and parts of Chapters 6 and 7.

In my work on solutions of Feigenbaum’s functional equation with an essential
singularity, I collaborated with George Szekeres of the University of New South
Wales and Tony Dixon of the University of Western Australia. The formulation
of the domains for the Abel functional equation was done by George Szekeres, I
designed all the computer programs used to solve the functional equations, and
was assisted in the implementation and running of these programs by Tony Dixon.
A version of this section has been submitted for publication as a joint paper by
the three of us.

In my work on feigenvalues of mandelsets I collaborated with my supervisor,
Colin Thompson, and Reinout Quispel of La Trobe University. A version of § 3.1
was published as a joint paper by the three of us.

In my work on quaternion maps I collaborated with Stephen Bedding of La
Trobe University. In § 6.5.1 the initial idea of using Schur forms was mine, but
Stephen Bedding did most of the Maple calculations exploiting this idea.

[ wrote this thesis on Pentium 90 hardware running linux 1.2.13 with BTEX 2¢.
Since this is all free software, I must thank the authors: Linus Torvalds for linux,
and Donald Knuth and the I¥TEX team for I¥TEX 2¢. I designed the main text font
myself, based on Knuth's concrete font. The maths font is euler roman, except for
the digits 0,1,...,9. The bibliographic reference for this thesis is [Briggs, 1997].
In order to satisfy University of Melbourne regulations, [ declare that according to
detex *tex | wc, this thesis contains about 5 x 10* < 10° words.

This version of January 11, 2001 includes minor corrections made since the final

submitted version. These are marked with marginal changebars.
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Chapter 1

Introduction

)

Macbeth: ... we delight in physics ...
Macbeth, act 2, scene 3

1.1 History

Feigenbaum scaling was discovered independently and almost simultaneously by
Grossmann and Thomae [Grossmann and Thomae, 1977 and Feigenbaum [Feig-
enbaum, 1978|. Curiously, despite being a purely mathematical phenomenon, it
was discovered by theoretical physicists, and though mathematicians contributed
to the subsequent development of the theory, most of the resulting papers have
appeared in the physics literature.

In the late 1970s the discovery of Feigenbaum scaling generated much excite-
ment, which lasted for about ten years. This was part of the parallel development
of nonlinear dynamical systems theory. By the late 1980s most physicists appeared
to have decided that the subject was completely understood, and little more re-
mained to be done. [ hope to show otherwise in this thesis. The term ‘universality’
is often used in this context (from the analogy with universality of phase transi-
tions in statistical mechanics), but I avoid this over-enthusiastic claim. Rather, we
can claim that Feigenbaum scaling is generic, meaning that it occurs in all systems
except those in which it does not occur. The subject has been well surveyed several
times; for example, [Vul, Sinai and Khanin, 1984; Cvitanovi¢, 1989; Argyris, Faust
and Haase, 1995]).

In this thesis, I aim to see how far the concept of Feigenbaum scaling can
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be generalized. Some of the highlights are the most precise determination of the
real Feigenbaum scaling constants (§ 2.1) and their asymptotic limits (§ 2.4); the
classification of complex solutions to the Feigenbaum functional equation (§ 3.2);
the clarification of the nature of Manton-Nauenberg scaling (§ 4.4); the first detailed
discussion of quaternion iteration theory (Chapter 6), and the first evidence for

scaling in two-torus maps (§ 5.2).

1.2 What is Feigenbaum scaling?

Throughout this thesis, I consider families of discrete dynamical systems defined

by iteration of maps f,, on a space X:
fuoxo— fu(x). (1.1)

Here X will stand for the reals R, the plane R?, the complex numbers C, the
quaternions H, the circle T" or the two-torus T?. The maps f, will be assumed
sufficiently differentiable or even analytic, as required. The real, complex, or quat-
ernion number p is considered the control parameter. In experiments modelled
by equation (1.1), p is varied slowly compared to the rate of iteration of f,. See
[Briggs, 1987] for examples of such experiments. In applications this family of maps
f, may arise from a Poincaré section or stroboscopic map of a flow. The sequence
(X0,X1,X2,...), where X, = f(xn1),m=1,2,3,..., is called the orbit of the seed
Xo. | also denote the nth iterate x, by <" (xo).

An orbit with x,, = x¢ for some integer n > 0 (the period) is called an n-cycle.

In the case of X =R or C, every n-cycle has a stability p defined by

n—1
p= Hfﬂ(xo)- (1.2)
i=0

We call orbits with stability satisfying |p| < 1 stable, and superstable if p = 0.

In the case of maps on a space of dimension greater than one, we replace f' in
equation (1.2) by the Jacobian matrix, and require for stability that all eigenvalues
of the stability matrix p have modulus less than unity. Most of Feigenbaum scaling
theory is concerned with the behaviour of superstable orbits; in particular, with
the rate of variation of 1 as the period n goes to infinity. For this to make sense,
we need to study a family of maps which possesses a complete sequence of period-

doubling bifurcations, so that we may find an infinite sequence of parameters values
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{Ho, K1, Mo, - . . } such that a stable cycle of period 2* of f,, bifurcates to a stable 2%*1-
cycle at © = py. We will also consider n-furcations for n = 3,4,5,... later. The
period-doubling process by which this takes place is described in all elementary
texts on dynamical systems (for example [Arrowsmith and Place, 1990]). The
standard example on the real line is the family f,(x) = pux(1 —x). For this family
of maps, Feigenbaum made the original discovery [Feigenbaum, 1978] that the limit

§=lim Mt (1.3)

)=00 M1 — W

exists. PFeigenbaum also computed an approximate value 4.6692 for this limit.

Another way of saying this is that

Apy = Py — pyeg ~ C6¥
for some constants C and 6. One may replace the bifurcation parameter values
e by superstable parameter values without change to the limit. In fact, this is
much preferable for numerical work. Feigenbaum showed additionally that there

exists an orbit scaling: If ¢y is the value of the nearest cycle element to zero in the

2%_cycle, then

P ()"
o= lim
k=00 Py

(1.4)

exists, and is about -2.503.

These constants o« and & have become known familiarly as ‘feigenvalues’. This
scaling can be seen in Figure 1.1, which shows the bifurcation diagram (that is, the
stable cycles as a function of the map parameter) for the family x — 1 — ax?, with
a logarithmic a scale. Feigenbaum found that all quadratic maps of the real line
possessed the same constant 6 = 4.6692, and he also found § ~ 7.28 for quartic
maps.

Originally, physicists had hoped that these so-called universal scaling constants
would prove useful in experimental situations, in that one may predict the next
bifurcation value of p given any three successive values. Unfortunately, this hope
has not been fulfilled in practice, due to the difficulty of seeing more than three
or four bifurcations in typical experiments. These experiments have now been
performed in many fields: fluid dynamics [Buzug, von Stamm and Pfister, 1993];
electronics [Briggs, 1987]; chemistry [Epstein, 1983], and mechanical engineering
[Slivsgaard and True, 1994|. It is unavoidably the case that the relatively large
value of 0 means that the bifurcations are lost in the experimental noise very
quickly. Nevertheless, the whole subject of Feigenbaum scaling has remained of

great interest from a mathematical point of view.
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0.2 - T

0.2 _' .
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109 (aoo - CL)

Figure 1.1: The figtree logged

1.3 The renormalization theory

Feigenbaum'’s achievement in his early papers was not simply to discover the scaling
behaviour, but to also give an explanation in terms of the period-doubling operator.

This is the operator T defined by its action on a function f:
f(x) — (Tf)(x) = af o f(or %), (1.5)

where ot = f(0). He then proposed that the scaling behaviour could be under-

stood in terms of a function fixed by T, so that

xgogla'x) =g(x). (1.6)
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This has become known as Feigenbaum’s functional equation (FFE), and T is the
period-doubling renormalization operator. It is also often known as the Cvitanovié-
Feigenbaum equation, in recognition of the significant contribution of Predrag Cvi-
tanovi¢ in the early stages of this work. The idea was that for large integers k,
appropriately scaled versions of the functions fjfk71> and fifl;f should approach

each other, at least near zero, for any suitable family f,; and that the limiting

function
g(x) = lim gi(x)
where
gi(x) = (TH) (x) = a2 (a™*x),

should be independent of the family f, and should satisfy the functional equation
(1.6). This explanation turned out to be correct, and various rigorous results about
the solutions of equation (1.6) have since been proven [Campanino, Epstein and
Ruelle, 1982; Lanford, 1980; Epstein and Lascoux, 1981; Lanford, 1982; Vul et al.,
1984; Koch, Schenkel and Wittwer, 1994]. Since all scaling properties of period-
doubling in a given dynamical system can be deduced from the appropriate solution
g of the FFE, each solution g is appropriately called a universal function. Also
important in this description is the linearization DT, of T about its fixed point g,

whose action on a function h is given by

(DT h)(x) = ag’ o gler 'x)h(o %) + ahoo gear 'x) +
(o — 1)h(0) + ah(1)][xg’(x) — g(x)],

the last term here arising from the dependence of & on f. Feigenbaum proposed
an explanation of o as the largest eigenvalue of DT, greater than one, which turns
out to be unique for the case of real quadratic maps. Other technical details of
this theory have been fully described by Vul et al. [Vul et al., 1984]. In this thesis

I will largely be concerned with various generalizations of equation (1.6).

1.4 Other developments

Here are some other recent developments in Feigenbaum scaling theory, less directly
related to this thesis.
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e In [Kawai and Tye, 1984], Kawai and Tye discuss scaling in maps which are

not analytic at their maximum; also, maps with asymmetric maxima.

e In [Vulet al., 1984], Vul, Sinai and Khanin study the relationship Feigenbaum
scaling and the thermodynamic formalism of dynamical systems theory due
to Ruelle and others. This paper also gives one the best surveys of the

renormalization theory approach.

e In [Hu and Mao, 1987, Hu and Mao study the transition to chaos in higher

dimensions; in particular, in R? and R*.

e In [Post, 1991], Post studied the scaling of periodic windows of unimodal

maps.

e In [Warner and Delbourgo, 1991], Warner and Delbourgo discuss the mor-
phology of the period-doubling universal function, that is, the form of its

extrema and its asymptotic behaviour.

e In [Roberts and Quispel, 1992], Roberts and Quispel studied reversible maps,
especially of the plane, and discuss scaling in such maps in their section 5.2.
Reversible maps are those which can be written as the composition of two
involutions; that is, two maps which are each compositional square roots of

the identity map.

e In [Zaks, 1994|, Zaks studies what he calls double exponential scaling in
sequences of m-tuplings with non-integer m for unimodal mappings. He
makes an interesting analogy with the circle map golden-mean scaling (see
§ 4 of this thesis) to make a generalization of the definition of m-tupling to

non-integer m.

e In [Wells and Overill, 1994], Wells and Overill discuss the extension of the

real solution of the Feigenbaum functional equation to the complex plane.

e In several papers, [Kim and Hu, 1988; Kim, 1994; Kim, 1997], Sang-Yoon
Kim has studied scaling in higher dimensional maps. In [Kim and Hu, 1988],
he looks at period n-tupling in area-preserving maps. In [Kim, 1994; Kim,
1997, he studies four-dimensional maps.

The subject of Feigenbaum scaling in maps of the plane R? is vast and has not

been satisfactorily surveyed in the literature. As it is not directly relevant to this

thesis, I will here just summarize the most significant work:
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e Derrida and Pomeau [Derrida and Pomeau, 1980] used a low-order renormal-

ization method with the Hénon map

X
—
Y

to obtain approximate values of 6.

1+y—ax?
bx

e In [Benettin, Cercignani, Galgani and Giorgilli, 1980] and [Benettin et al.,
1980] the authors obtained numerical confirmation of the Derrida and Pomeau
result (& ~ 8.72) via direct studies of plane maps. They also obtained es-
timates of the two orbit scaling parameters o« ~ 4.02 and 3 ~ -16. These

values were also obtained by Bountis [Bountis, 1981].

e [Collet, Eckmann and Koch, 1981a| formulated a two-dimensional analog of
the Feigenbaum functional equation with a diagonal matrix taking the place
of . They solved this with two-variable power series, confirming again the

numerical values of 6, « and (3.

e [Greene, MacKay, Vivaldi and Feigenbaum, 1981] studied the de Vogalaere

Xk+l |
Yk+1

and applied a renormalization scheme. They obtained estimates of the scaling

map

Uk + Cxp + %2 ]

2
X — CXiep1 — Xiyq

constants accurate to about eight decimal places. These were in agreement

with the Hénon map values.

e In two papers [Eckmann, Koch and Wittwer, 1982; Eckmann, Koch and
Wittwer, 1984], Eckmann, Koch and Wittwer give a rigorous proof of the ex-

istence of a solution to the two-dimensional Feigenbaum functional equation
AtoDoDoA=0,

where A is a two-by-two scaling matrix. More recently, Davie [Davie, 1995]

has given another proof of this result, this time without computer assistance.

e Widom and Kadanoff [Widom and Kadanoff, 1982] have used a generating
function to study equation (1.4).
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e Finally, Hauser, Curado and Tsallis [Hauser, Curado and Tsallis, 1985] have
discussed generalized Hénon maps with the power 2 replaced by a larger

integer z. They find a dependence of 6 on z.

e [Reick, 1992] discussed correction to scaling in two-dimensional maps.



Chapter 2

Feigenbaum scaling in real maps

Falstaff: ‘O, thou hast damnable iteration ... ’

King Henry IV part 1, act 1, scene 2

2.1 A precise calculation of the Feigenbaum con-
stants

The Feigenbaum constants were first discovered in the theory of iteration of real
functions, and I will begin by calculating to high precision the constants « and o
associated with period-doubling bifurcations for maps with a single maximum of
order d, for d between two and twelve. Multiple-precision floating-point techniques
are used to find a solution of the Feigenbaum functional equation, and hence the

constants.

2.1.1 Background

I will consider the iteration of the family of maps

fua(x) =1— pfx/4, R>d>1, (2.1)
that is, sequences generated from the seed xq by

Xit1 = fualxi), i=0,1,2,.... (2.2)

As described in Chapter 1, Feigenbaum [Feigenbaum, 1979] observed that there

exist bifurcations in the set of limit points of the sequence (2.2) (that is, in the set

9
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o

Reference

[Feigenbaum, 1979; Feigenbaum, 1980aq]
[Feigenbaum, 1979; Feigenbaum, 1980aq]
[Christiansen et al., 1990]

-

2.502907876
2.50290787509589284
2.50290787509589282228390287
2.5029078

1.690

1.467

1.358

1.292

o

[Delbourgo and Kenny, 1986]
1.93
1.69
1.56
1.41
1.29

= =J O iR W N= 00 O =N NN

o

Table 2.1: Imprecise values of Feigenbaum’s « in the earlier literature

of all points which are the limit of some infinite subsequence) as the parameter p
is increased for fixed d. Roughly speaking, if the sequence (2.2) is asymptotically
periodic with period p for a particular parameter value p (that is, there exists a
stable p-cycle), then as p is increased, the period will be observed to double, so
that a stable 2p-cycle appears. I denote the critical value of u at which the 2/ cycle
first appears by ;.
Feigenbaum also conjectured that there exist certain ‘universal’ scaling con-
stants associated with these bifurcations. Specifically,
5(d) = lim B —H-L
1m0 W1 — Yy
exists, and & about 4.669. Similarly, if ¢; is the value of the nearest cycle element

to zero in the 2J cycle, then
a(d) = lim b
j—00 Gj1
exists, and o is about -2.503. The conjecture for the case d = 2 was proven by
Lanford in 1982 [Lanford, 1982], and for d < 14 by Epstein in 1986 |[Epstein,
1986]. Some numerical results in the literature are given in Tables 2.1 and 2.2.
The most precise known values (for d = 2 only) before my calculation were those
of [Christiansen, Cvitanovi¢ and Rugh, 1990].
[ have described some examples of physical systems in which « and & are rele-
vant in [Briggs, 1987]. Despite the theoretical and applied interest of these num-

bers, little is known about their mathematical properties; for example, whether
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o

d

4.6692
4.6692016091029909
4.6692016091029906718532038
4.6692016

7.29

9.30

10.948

12.37

4.67

6.08

7.29

8.35

10.2

12.3

Reference

[Feigenbaum, 1979; Feigenbaum, 19804]
[Feigenbaum, 1979; Feigenbaum, 19804]
[Christiansen et al., 1990]

o

[Delbourgo and Kenny, 1986]

=g O W N 00O =N NN N

e}

Table 2.2: Imprecise values of Feigenbaum’s 6 in the earlier literature

they satisfy any simple algebraic relations. On the question of the limits as d
tends to oo of o and 0 , see [Eckmann and Wittwer, 1985] and § 2.4 of this thesis.
I will next evaluate & and & to high precision for various d, in order to provide

data for testing conjectures concerning these numbers.

2.1.2 Method

Calculating « directly from the definition is impractical because it would involve
finding high iterates of f, which are subject to accumulation of roundoft error,
making it difficult to locate the bifurcation values p; accurately. (See, however,
§A)

Instead, as described in the introduction, we define an operator T, acting on

functions g : R —» R, by

(Tg)(x) = goglg(l)x])/g(1).

If we find an even real analytic function invariant under T, with g(0) = 1, then «
is determined by o = 1/g(1).

The numerical method proceeds by approximating g by the form
gix) =1+ g™
i=1

An approximate fixed point of T can then be found either by formal power series

methods (see Chapter 7) or by a collocation method. I will use the latter approach
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first, and then confirm my results with power series methods. In a collocation
method, we require that Tg = g be satisfied at n points x; in the interval (0, 1],
and we then solve the resulting n nonlinear equations by an n-dimensional Newton-
Raphson iteration [Newton, 1687; Raphson, 1690; Press, Flannery, Teukolsky and
Vetterling, 1986]. Thus one requires (for j =1,2,... ,n) that

n n n n n
<1+Zgi> <1+Zgi|xj|di> —1=) g[1+) gi|(14+D) g
i=1 i1 k=1 i1 o1

If we call the left side of this equation fj, the Newton iteration requires the inversion

di|dak

=0.

of the Jacobian matrix 0f;/0g; . This is the major part of the computational task.
For the smaller values of d, it was found that the initial approximation to the
coefficients g; was not critical, but for the larger values of d some trial and error
was necessary before convergence was obtained. For d greater than 12, all initial
approximations tried produced divergence of the Newton iteration. However, it is
known that a solution does exist for all d.

Feigenbaum has shown [Feigenbaum, 1979] that the constant & is the largest
eigenvalue of the local linearization of T about the fixed point function g found

above. A simple calculation shows that this operator DT (for fixed «) is given by
(DTf)(x) = g’ o g(x/et)f(x/ex) + xf o g(x/x).

Once the approximate fixed point g has been found, one may construct a finite-
dimensional matrix approximating DT by a method similar to that used above.
That is, one evaluates the right side of the above equation at the n nodes x;. The
largest eigenvalue of the matrix can then easily be found by the power method
[Golub and Van Loan, 1989].

2.1.3 Results

[ implemented the above scheme with arbitrary-precision floating point arithmetic
using the methods described by Brent [Brent, 1978]. The choice of the nodes x;

was found to be not critical, the spacing x; = (i/n)"/¢

producing the most stable
results.

It is observed that the coefficients g; decrease rapidly in magnitude; for example
for d = 2, |g;| is about 10~". This gives a guide to the value of n needed; since o
is 1/g(1), we must set n about equal to the number of decimals desired for «, and

preferably greater. I first found o and 6 for d = 2,3,...,12 with n = 75 and a
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«(2) | -2.50290787509589282228390287321821578638127137672714997
7336192056779235463179590206703299649746433834129595232

5(2) |4.66920160910299067185320382046620161725818557747576863
27456513430041343302113147371387

«(3) |-1.92769096384764084494999435296631905189265896703673262
074357967274086677490009

5(3) | 5.96796870377745104099419301997967232351260291982742394
83931720

«(4) | -1.69030297140524485334378015032416134822827805970956196
6682423263

5(4) | 7.284686217073343364308930567995553069478046619799790659
07212

«(5) | -1.555771250196518402132978629657484410192322899174229329

5(5) | 8.349499132066963521109747401811235583257476

«(6) | -1.4677424503199009444538343151089737463687971293967

5(6) | 9.296246832771370082834476566367457550306688756

«(7) |-1.40511078831683179942567128926679825719406757

5(7) | 10.22215952883488165524180132934744

«(8) | -1.35801727913805034548737633310626140065806

5(8) | 10.948624265941590425534207900712234803

«(9) |-1.32118575980525276678233264501112163344

5(9) | 11.76833363955408532268157502

«(10) | -1.291516867262344569625592342901483728

5(10) | 12.341409045349293839697630423331

«(11) | -1.267061407902472463290059733681368673

5(11) | 13.07654580565116239270558

«(12) | -1.2465277517207492954398065872519312

5(12) | 13.5350756661702764957005633538

Table 2.3: Precise feigenvalues

13

working precision of 150 decimal places. I then repeated all calculations with n =

100 and a working precision of 200 decimal places. The results given in Table 2.3

show as many digits as agree between the two calculations. Thus, it is probable

that all listed digits are correct.

2.2 Algebraic relations

After computing the results of the previous section, I decided to check the feigen-

values by re-implementing the computation to use formal power series methods

(see Chapter 7) and the new mpfun multiple-precision software by David Bailey

[Bailey, 1993b; Bailey, 19934]. Running the calculation at a precision level of 576
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«(2) = —2.
502907875095892822283902873218215786381271376727149977336192
056779235463179590206703299649746433834129595231869995854723
942182377785445179272863314993372578112163594879503744781260
997380598671239711737328927665404401030669831383460009413932
236449065788995122058431725078733774630878534242853519885875
000423582469187408204281700901714823051821621632597520264070
154734369163264859567116308023672243466392188083369967457397
123570489870973555736656062998020709602323617758740920917918
862600565037392462501491789236269217819393491578638085655372
062878991364751071130930882955530528

5(2) = 4.
669201609102990671853203820466201617258185577475768632745651
343004134330211314737138689744023948013817165984855189815134
408627142027932522312442988890890859944935463236713411532481
714219947455644365823793202009561058330575458617652222070385
410646749494284981453391726200568755665952339875603825637225
648004095107128389061184470277585428541980112212097941214729
746823497270154908259119420781334087939674017078877189675350
024865725197764177756197784795912347535009737589351782623659
047350752485156705948080910948188617490903004106492043004698
687299477012918774513898492098234382

Table 2.4: Very precise feigenvalues

decimal places, I obtained the results of Table 2.4.

These results allowed me to search for number-theoretic relations amongst «, &
and other algebraic constants. For this several methods are available (for example,
see [Bailey, 1988|), but I used the recent PSLQ algorithm invented by Ferguson
and Bailey [Ferguson and Bailey, 1991]. This is intended to decide whether a given
number is algebraic, that is, it is the root of a polynomial with integer coefficients,
or whether the number is an integer linear combination of other algebraic numbers.

[ obtained the following result concerning my most precise values of «(2) and

5(2):

Theorem 1 If «(2) is the root of a polynomial of degree 20 or less with integer
coefficients, then at least one coefficient exceeds 2 x 10'5. If §(2) is the root of a
polynomial of degree 20 or less with integer coefficients, then at least one coefficient

exceeds b x 100,

This result is rigorous to the extent that if such a relation had existed, PSLQ

would have found it. Of course, if the input values of « and 6 were incorrect for any
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reason, the ‘theorem’ may not be true. In any case, this computation virtually rules
out the possibility that & and & could be algebraic with small degree, in particular,
rational with small denominators. Similar negative results were obtained for all
other constants (oc(4),5(4) etc.) that I tried. I also computed the frequencies of
partial quotients in the continued fractions of these feigenvalues, without finding
any significant deviation from the expected Gauss distribution. I know of no other

work on the number-theoretic nature of the Feigenbaum constants.

2.3 Corrections to scaling in real maps

In this section I will discuss the generic aspects of scaling in period-doubling se-
quences in families of maps of the real line possessing non-integer degree. I show
that the scaling behaviour in both the orbital and parameter spaces is governed by
the same sequence of eigenvalues of the linearized renormalization operator. These

eigenvalues are smooth functions of the degree of the maximum of the map.

2.3.1 Introduction

As described in the introduction, Feigenbaum [Feigenbaum, 1978; Feigenbaum,
1979] showed that period-doubling sequences in families of maps of the real line of

the form
x — fa(x) = A — x4 d=2,4
have the asymptotic behaviour

AN =Nepr — M~ aold(d)]™™ (2.3)
b =2 7(0) ~ bola(d)]* (2.4)

as k — oo. Here Ay is the smallest parameter value at which f) possesses a
superstable 2% cycle, superscript <™ indicates n-fold composition, and ay and by
are constants. (ao and by are of course dependent on d, but as I am not interested
in their value, I suppress the dependence from the notation.) o and & were
claimed to be universal, that is, dependent on d only. Additionally, Feigenbaum
gave an argument ([Feigenbaum, 1978], section 5) that the rate of convergence of
o = by/ by to its limit is also 6 . This amounts to claiming that equation (2.4)

is the first term in an expansion

dx ~ bola(d)] ™  + byla(d)5(d)]  + - -
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However, Feigenbaum had evidence was that this is true for d = 2 only. The present
study arose out of a desire to understand this discrepancy, and more generally, the
dependence on d of the spectrum of feigenvalues. The case d = 2 has been studied
by Mao and Hu [Jian-min Mao and Hu, 1987], Liu and Young [Liu and Young,
1987] and by Reick [Reick, 1992]. Here I present results of a numerical study of
the general d problem, and a plausibility argument to justify the assumptions used

the numerical study.

2.3.2 Numerical results

In order to generalize the concept of Feigenbaum scaling, I postulate the following
forms for the behaviour of AAy and ¢y:

AN = Z% (2.5)
i=0 "V
) b1

b = ZJ (2.6)
i=0 !

where a; and b; are constants (the amplitudes), and [0 < |8;], o] < [oy] if 1 < j.

To ascertain the validity of these expansions, I accurately computed from four
to eight of the quantities d; and «; for about 50 values of d between 1 and 10.
Here &; and «; are the constants to be determined, with 8y = & and &y = «. The
exponents are named in order of increasing magnitude. It is necessary to compute
typically 15 to 20 superstable parameter values Ay, for which I used the standard
Newton-Raphson iteration as described in Appendix A. The use of high precision
arithmetic (50 to 100 decimal places) is essential, since up to 22° iterations of fj
are being computed, and higher precision is needed for larger d. In general, it
was found that if, at a given precision, convergence of the Newton iteration was
obtained at all, then the parameter value to which the iteration converged was
correct. All results were confirmed by re-computation at higher precision levels
than used for the quoted values.

I then computed the exponents by a method similar to that described by Mao
and Hu [Jian-min Mao and Hu, 1987|, again using high precision arithmetic. I
illustrate this by the case of the 6 scaling exponents, the case of « being exactly
analogous. The problem reduces to solving a linear system and a polynomial
equation, as follows. Assuming that N scaling exponents are desired, 2N successive

values of AA are required. Let us call these AAy,...,AAijon—1- Eliminating the
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constants a; from the definition of the scaling exponents results in

[ A A CDMAan (T T T ean ]
—ANips  +AA3 v (FDNAAGN t | —AAi
| —AAN AN (—1)NANon—1 ||t~ | —AAiiN- |

where t; = Z];l 8i, to = Zl\;} :8; etc. This equation is solved for {t;, ta, ..., tn},

and the roots of the polynomial
XN — XNy e (1) N

are found. The N roots are the desired scaling exponents §;. This calculation
is identical to the construction of a Padé approximant to the analytic function
f(x) = > 2, ANix', and the subsequent determination of the poles §; of f(x). This
point of view suggests that in the case of integer d, where 0 is known to very high
accuracy (as in § 2.1), elimination of the pole 6 by multiplication of f(x) by 1—x/
might achieve greater accuracy in the calculation of the higher poles §;. However, I
have not found a sufficient increase in precision to make this procedure worthwhile.
However, the Padé approximant point of view will prove useful in § 4.4.

A selection of numerical values are shown in Table 2.5, and the full results
are shown in Figures 2.1 to 2.4. In all figures the exponents are numbered in
order of increasing magnitude. In these tables, the word ‘origin’ refers to the
explanation of the numerical values in terms of the eigenvalues L, and the gaps
are unobserved scaling exponents. For reasons that will become apparent, it is
most useful to consider §;/6 and o;/x,i =1,2,3,..., rather than the exponents

themselves. Only as many decimal places as I believe correct are quoted.

2.3.3 Theory

All the above results can be understood by an extension of an argument of Feig-

enbaum [Feigenbaum, 1980a]. I define the usual doubling operator T, by
(Tf)(x) = af o fx 'x),

where « is the (assumed known) value appropriate to the degree d of the maximum

of f. A Taylor expansion in A of ) about A, gives

0fy
f}\ = f}\oo‘l‘(}\_xoo)a—l'"'

= go(x) + (A= Ax)hgo(x) +--- .
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d=2
§ = 4.6692, o0 = —2.5029
5;/0 o /o igi d=41
L i orsn 5 = 7.2846, x = —1.6903
16602 | 4.6692 5 =7 X = 7 2900
6.2645 o i/ oi/oc | origin
~8.0872 | —8.0872 upl 3.4266 | 3.4266 R
L —3.9114 | —3.9114 1y
—17.4499 | —17.4499 1y 2
) —6.4283 | —6.4283 Th
21.8014 21.8 &
) 7.2846 7.3 &
29.9 dx
—37.76 5, ! 13 0102
' - WL = 3.4266, 151 = —3.9114
64 u 1 2
L !l = —6.4282
—84 dp,
w, - = —8.087165, u, = —17.4499
d=6
5 =9.2962, x = —1.4677 d=38
5:/8 oi/oc | origin 5 =10.948, x = —1.3580
2.6949 | 2.6949 ot 5i/d o/ | origin
—2.9242 | —2.9242 w! 2.3285 | 23285 | i’
—4.7499 | —4.7495 uyt —2.4620 | —2.4620 | ;!
4.8100 | 4.8112 ! 3.6309 3.63 | gt
—6.8 —6.8 T —3.94 -39 !t
7 7.3 T —4.992 5| s
Wt =2.6949, w, ' = —2.9242 5.463 54w
Hy !t =4.7499, u, ' = 4.8100 Wi not computed
us ' = —6.901

Table 2.5: The dominant scaling exponents for even integer d

gx and hy may now be defined by
(T (%) = g (%) + (A = Aco)hue(x) + -+ -,
and it is known from the work of Feigenbaum [Feigenbaum, 1980a] that as k — oo

g(x) — g(x)

hi(x) = (DTg)(hi—1)(x).

Here g(x) satisfies Tg = g, DT, is the linearization of T about g, and & ' = g(0).
It is known that Feigenbaum’s 8 is the dominant eigenvalue of T;, and governs the
approach of Ay to Ay. [ will now compute the effect of the subdominant eigenvalues.

Let us expand hg(x) in eigenvectors e;(x), (j = 1,2,...) of DT,. Letting DTe; =
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19
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Figure 2.1: The scaling exponents o vs. d,i=0,1,2,3
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Figure 2.2: The scaling exponents d; vs.

uje; with e;(0) =1 and py = & gives

ho(x) = ) aje(x)
hk(X) = CL16k !61(X)+

d,i=0,1,2,3,4
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15
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et
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Figure 2.4: The ratios 6;/6 vs. d,1=0,1,2,3,4
Thus as k — oo,
k e a; . k
X2 (o %) ~ g(x) 4 (A — As) a1 8¢ [61(76) + Z 2 <&) ej(x)] ,

and so
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Inverting the sum in square brackets shows that
o0
oo T }\k ~ Z b)éra
j=1

where each §; is of the form & [ [ -, uy ™™, (my being non-negative integers), and
{b;} are constants which are complicated functions of {a;}.

This completes the computation of §; in terms of {p;}. It is clear that the
behaviour can be pictured as an approach of f)_ to f),, which for an arbitrarily
chosen parameterization of f), will not be along the eigendirection corresponding
to 8. Nevertheless, the more general approach is still governed by the largest
eigenvalues of DT,.

I now perform a similar calculation for o;. Applying the doubling operator 2% !

times to f),_ gives

00 k—1

j=1

Thus
00 k]!
oFpy ~ 1+ (A=Al 1% [14+ Y 2 (ﬁ)
=1 ap \ M
(recalling that ¢y = fffk_l>(0)). Now performing an inversion as above gives

1+ Z Cj6}<] ,
j=1

where c; are constants and §; are the same scaling exponents as above. The im-

~ (x*k

portant result is that the one set of eigenvalues ; governs both the parameter and
the orbital scaling. The latter simply have an extra factor of «.
There is a curious phenomenon in the case d = 2. The largest eigenvalue

less than one takes the value exactly o 2

. In other words, there is an eigenvalue
crossing at d = 2. As expected, the effect of the eigenvalue is observed in the
orbital scaling, but surprisingly, it is not observed in the parameter scaling. I
conjecture that this is because the corresponding amplitude a; is zero (or very
small). This effect nevertheless deserves more detailed study. This appears to be
the only case where p; = o« * for any j and k, though there are close approaches
at d = 4,6 and 8. These close exponents make the numerical calculation difficult,

and this explains the oscillations seen in the graphs around d = 8 to 10. I believe
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that a more accurate calculation would show that all the exponents are monotonic

functions of the degree of the maximum d.

The eigenvalues p; can be computed independently for integer d via a numerical
approximation to DT, as described in § 2.1. This can be achieved this by first com-
puting a finite-dimensional approximation to g(x) in the form g(x) = ZiN=0 gix4t.
This is found by solving Tg — g = 0 by a Newton iteration in the space of Tay-
lor coefficients g;. Similarly DT, is represented by a N x N matrix, and all its
eigenvalues computed. The fact that an infinite-dimensional problem has been
truncated to finite dimension means that some extra eigenvalues are introduced,
but the relevant eigenvalues are usually readily identified by comparison with the

bifurcation data. It is known that o ¥

is an eigenvalue for integer k [Feigenbaum,
1979], and Feigenbaum conjectured that these are all the eigenvalues of modulus
less than unity. It is clear now that this is not the case. The eigenfunctions cor-
responding to even integer k are even, so that for odd integer d, our expansions
cannot represent the eigenfunctions, and the eigenvalues are not found. However,

this is not a difficulty as these eigenvalues are not relevant to the bifurcation data.

[ list a few of the largest eigenvalues W; for even integer d at the bottom of the
tables in Table 2.5. Observe that eigenvalues not of the form «* are also present.
This then is the explanation of the discrepancy between the behaviour at d = 2
and d = 4 mentioned in § 2.3.1.

Of interest is the question of the limits d — 1 and d — oo of the scaling
spectrum. Collet et al. [Collet, Eckmann and Lanford, 1980] have shown that
- 2 as d — 1. Eckmann and Wittwer [Eckmann and Wittwer, 1985] and van
der Weele et al. [van der Weele, Capel and Kluiving, 1986; van der Weele, 1987]
have shown that 6 —= 30 as d — oo. [ will examine this limit in detail in § 2.4.
It is also known [Delbourgo, 1992] that x — —oo as d — 1, and that &« — —1 as
d — oo. Unfortunately the perturbation method (about d = 1) used by Collet et
al. gives only the behaviour of the largest eigenvalue §. It will be observed from
the graphs that all the eigenvalues appear to be smooth functions of d, despite
the fact that there are crossings in the exponents. Notice also that powers of
0 appear in the scaling spectrum, and that these dominate the behaviour for d
close to one. These powers of & can be seen as the rapidly increasing functions
near d = 0 in Figure 2.2. Conversely, the behaviour for large d is governed by
a number of eigenvalues which approach each other in magnitude. In fact, these

eigenvalues appear to occur in pairs of approximately equal magnitude but opposite
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sign. The numerical calculations suggest that the following limits exist, and take

the approximate numerical values given:

d—oo d—oo
imog /0 ~ —Uimog/o~ 2.
d—oo d—oo

I have thus shown that all observable aspects of the period-doubling sequence in
families of maps of the form A—|x|? are governed by the eigenvalues of the linearized
period-doubling operator. This generalizes the original Feigenbaum scaling law.
The same is no doubt true in the case of complex maps A — z™ (with integer
m > 0) in the case of n-tupling (n = 2,3,4,...). In § 3.2.2 I describe some
additional calculations for the cases of period-doubling and period-tripling and

m=2,3,...,8 which confirm this.

2.4 Analytic solutions of the Feigenbaum

functional equation

I began the study described in this section by trying to rigorize the results of
[Thompson and McGuire, 1988] on essentially singular solutions of the Feigen-
baum functional equation. In this paper, Thompson and McGuire, by means of
an inspired ansatz, found an approximate solution of the Feigenbaum functional
equation having an essential singularity. I was intrigued by this work, and wanted
to see whether the number of terms in the series part of the solution could be
increased indefinitely. This turned out to be difficult, as the series is divergent,
but I eventually succeeded.

It is well to begin to noting that the Feigenbaum nonlinear functional equation
arising in the scaling theory of maps of the real line can be related to the classical
Schroder and Abel linear functional equations. These functional equations are
discussed in Chapter 7. The link will be used here to obtain information about
the analytic solutions, and in particular the essentially singular solution, of the
Feigenbaum equation, providing an alternative description of the latter to that of
Eckmann and Wittwer. I obtain a very accurate numerical approximation to this
singular solution, using special techniques to handle the divergent series. This
accuracy is a substantial improvement on previous estimates of the solution, and

allows a very precise determination of the associated asymptotic feigenvalues.
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In § 4.3, the solutions of the Feigenbaum-Kadanoff-Shenker equation for scaling

in circle maps are solved by a similar method.

2.4.1 Introduction

As described in § 1.2, Feigenbaum'’s discovery [Feigenbaum, 1978]| of scaling prop-
erties of the iterates of parameterized families of unimodal maps x — ¢, (x) of
intervals of the real line has suggested an explanation in terms of the Feigenbaum

functional equation
fof(yx)=vyf(x), vy>0 (FFE)

and its analytic solutions. Note that here y is the reciprocal of the constant o used
in § 2.1. Such solutions and the values of the constant v depend on the behaviour
of the solution function at its unique extremum. Let us scale the interval on which
the solution f is defined so that f maps the interval [0,1] into [0,1].

In the original version of the equation ([Feigenbaum, 1979]) the right hand side
of (FFE) had a negative sign and f had a maximum, I will instead use a form first
introduced by McGuire and Thompson [McGuire and Thompson, 1982]. This is
simply obtained from the Feigenbaum form by conjugation with x — 1 —x.

It is then found that solutions f are such that the graph of f decreases mono-
tonically from f(0) = 1 to its minimum f(b) = 0 and then rises monotonically to
f(1) =y. I shall also impose the condition that the solution should have non-zero
derivative at x = 0. Such solutions are called strongly unimodal. Solutions without
a singularity (either essential or algebraic) at b will be called regular.

Now if f is regular at its zero b, it must behave like ¢(b—x)" for some positive
even integer N in the neighbourhood of b. I shall call such a solution regular of
order N and denote it fy; its existence is well established; for example, [Koch et
al., 1994] prove the existence for N = 2; [Campanino et al., 1982] and |[Epstein,
1986] prove the existence for 2 < N < 14. Also see § 2.1 for accurate values of
the associated constants. It will become apparent that the key to understanding
the limiting behaviour of v as N — oo is the study of non-regular solutions of the
Feigenbaum functional equation.

We next need to consider the invariance of the Feigenbaum functional equation

under the power conjugacy transformation

fualx) = [f(N], A >0,
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Figure 2.5: The solution of FFE for N = 2

It carries fy into a fn which also satisfies (FFE) with associated constant y*
and minimum at b*. At this minimum it behaves like c)(b* — x)™. If NA is an
even integer then fy is again a regular solution; otherwise it has an algebraic-
logarithmic singularity at b*. Hence in every conjugacy class of a regular fy there
are infinitely many regular solutions, but at most one of these will be strongly
unimodal. There is no a priori reason why the strongly unimodal solution should
be regular but indeed for every even integer N > ( there seems to exist a unique
regular unimodal solution which has a negative derivative at zero. This is clear
from existing literature and is confirmed by the computational evidence of the

present section.

If it exists, I call this the principal solution of order N, and the symbol fy
will be used for this particular solution. See Figure 2.5 for a plot of the principal

solution fq.

Apart from the fy there is another possibility to be considered: a conjugacy
class of solutions of (FFE) characterized by the property that members of the
family tend to zero at b more rapidly than any positive power of [b — x|. In an
elaborate computer-assisted study, Eckmann and Wittwer [Eckmann and Wittwer,
1985] proved the existence of a singular analytic solution. Epstein has also proved
the existence of this solution in Appendix 2 of [Epstein, 1986]. My aim in the

present section is to describe a method of accurately constructing this solution .
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Now since all power conjugacies of this solution f,, have the same kind of es-
sential algebraic-logarithmic singularity at their minimum b we cannot distinguish
a representative of the class through its behaviour at b. However, there is at most
one strongly unimodal member of the family and this particular representative will
be called the singular solution and denoted by f.,. The exact form of the essential
singularity will be given later.

We must next consider the analytic nature of the solution to the left and right
of the singular point b. This question does not arise with the principal solutions
(including the original Feigenbaum N = 2 solution) where the analytic continuation
of the left-hand solution is the right-hand solution. However, from the point of
view of the singular solution, the functional equation has a curious anomaly: the
solution function to the left and to the right of b involves two distinct analytic
functions which are not necessarily analytic continuations of one another, and yet
the two functions are denoted by the same symbol f in the equation. Since our
main interest here is in the singular solution, it is necessary to separate the rdles
of the two functions. This is achieved by considering an iterated one-sided form of
(FFE). This equation then involves only the left hand interval [0,b). It is

fo f(yf(yx)) = v*f(x). (FFE*)

From the solution of (FFE*) we can then easily obtain a solution of the original
(FFE) for the whole interval [0,1]. Another advantage of (FFE*) is that it leads
more directly to a link with Schroder’s and Abel’s functional equations which will
form the basis of the present method. In § 4.3 I will also discuss the Feigenbaum-

Kadanoff-Shenker equation

gog(e*x) =eg(x), €<O0. (FKS)

2.4.2 The principal and singular solutions
[ will next solve the Feigenbaum functional equation
f(x) =y 'fof(yx) (FFE)

for an analytic f which decreases monotonically from f(0) = a > 0 to f(ab) =0
for some b > 0 and then increases monotonically to f(a) = f(f(0)) = yf(0) = ya.
Note that in this formulation, 0 < y < 1. There is no restriction in generality if

we assume that a = 1, for the transformation f(x) = af(x/a) carries (FFE) into

foflyy) =vfly), y=x/q,
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that is, a Feigenbaum functional equation with the same vy and fl0) = 1. After

this is done, we have
f(0) =1, f(b)=0, f(1)=". (2.7)
Note also that
fof(y) =v? f(yb)=h, (2.8)

obtained by setting x =1 and x = b respectively into (FFE) and observing (2.7).

Since the solutions may have a singularity at b, we have to be careful to label
the solutions to the left and right of b differently. Let v(x) be the restriction of f
to b < x < 1 and f the restriction to 0 < x < b; then (FFE) takes the form

fof(yx) =vyv(x), for b<x<1 (2.9)
and
vo f(yx) =vyf(x), for 0 < x<Db. (2.10)

We may eliminate v from (2.9) and (2.10) by setting x = f(yy) for 0 <y < b
(hence b < x < 1); then (FFE) becomes

fof(yf(yy)) =v*f(y), for 0Ky <D, (FFE1)

an equation which only involves f : [0,b) — (0,1]. This iterated form of the
equation is equivalent to the original (FFE), for if we solve (FFE*) and then define
v(x) through (2.9), then (2.10) is automatically satisfied and (FFE) is also solved.
Of course if f is an analytic solution of (FFE*) then v : (b,1] — (0,v] is also
analytic, but not necessarily an analytic continuation of f.

From (2.10) we get v’ o f(yx)f'(yx) = f'(x) and setting x = 0, and assuming
f'(0) # 0, f'(0) # —o0, we get v/(1) = 1. Similarly, from (2.9), f' o f(yx)f'(yx) =

v/(x) and hence with x =1
f'o f(y)f'(v) = 1. (2.11)

Any solution of (FFE*) which satisfies f(0) = 1 and hence (2.8) must satisfy (2.11).
This provides a check for the accuracy of the calculations. In what follows I will
not be concerned with v, but rather will concentrate on solutions of (FFE*).

To get a better picture of the solution, let us denote by fy the restriction of
f to the interval Iy = [y**'b,v*b), k = 0,1,2,.... We know that 'y has a value
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about 0.03, so that the intervals accumulate rapidly at zero. Since f(yb) = b,
we have also yf(yy) > vb, from which it follows that f(yy) = fi1(yy) > b for
y € L. It follows immediately that we have f(yf(yy)) = fo(yfrii(yy)) and thus
fofo(yfiri(vy)) =v*f(y) <vy® =fof(y). From this we see that fo(yfi1(yy)) >
Yb and so (FFE*) becomes

fo o fo(vfii(vy)) = v*fk(y) for y € L. (FFE2)
In particular
fo o folvfi(yy)) = YZfo(U) for y €Iy =[yb,D). (FFE3)

The problem then is to determine f; so that f; are the analytic continuation of
fo- Once this is achieved, (FFE2) merely becomes an equation for the analytic
continuation of f, over the whole interval [0,b). Henceforth I will confine my
attention to (FFE3).

Since f(yb) = b and f is supposed to be analytic at yb, we may set

f(yb+vt) =b+Dbit+bot?+--- with b; <0

and assume convergence of the series for some [t| < 7, v > 0. Next set P (x) = f(yx),
h(x) = ¥ o(x); then (writing f for both fy and f;) (FFE3) takes the form

foh(x) =y*f(x). (s)

This is Schroder’s functional equation for the unknown function f. We may solve
it in a neighbourhood of a fixed point of h by the formal power series algorithm
described in Chapter 7. Such a fixed point is b; indeed

h(b) = op(b) =1 of(yb) =1(b) =f(yb) =b.
For convenience I transform the fixed point to uw = 0 by defining
h*(u) =b—h(b—u)and f*(u) = f(b —u);
then h*(0) =0 and
f* o h*(u) = y*f*(u). (S%)
To solve (S*) for f* we must know the Taylor expansion of h*(u). Now

P(b+1t) =f(yb+vyt)=b+bit+byt? +bgt3+---
h(b—u) =UP(b—bu+byu? —bsud+---)
:b+b1(—b1u+b2u2—)+b2(—b1u+b2u2—)2-|—
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hence
h*(uw) =b —h(b —u) = b?u+ ayu® + azu’ + - - - (2.12)
where
as = —byby(14by), az =Dbybs(1 +b?) +2b,b2, etc.

Suppose that b? # 1 in (2.12), then Schroder’s equation (S*) has a convergent

solution of the form
*(u) =cuN1+cu+cou+---) (2.13)

with arbitrary ¢ > 0, N > 0 and the coefficients ¢y obtained by formal substitution
of (2.12) into (S*). In particular the coefficient of uN gives b?N =2,

y =", by =—y"N,
The constant ¢ in (2.13) is determined from the condition f*(b —yb) = b, while
b is adjusted so that f(0) = 1, f*(b) = 1. In the case of the principal solution of
order N = 2 we have b; = —/y.

Substituting u = b(1 —y) —yt into (2.13) we can transform back to centre yb

and obtain
f(yb+vyt) =b+bit+bit* +--- (2.14)

The coefficients b; must be identical with the original coefficients by. This is the
basis of the computational method described in the next section.
Suppose that b? =1 in (2.12), that is

vf'(yb) =b; = —1. (2.15)
We then have
P(b+t)=f(yb+vyt) =b—t+byt? + bst® +--- (2.16)
and a; = 01in (2.12),
h*(u) =u+ asu’® + a;u* +--- (2.17)
with ag = —2bs —2b2, a; = —b,ybz — b3, etc. This characterizes the singular solu-

tion: the coefficient of u in the Taylor expansion of h*(u) (the so-called multiplier
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of h*) is one; that is, (2.15) is satisfied, and the coefficient of u? is zero. In such
multiplier unity cases it is necessary to use Abel’s functional equation instead of
Schroder’s (see Chapter 7). This is achieved by defining

_logf*(u)

Alu) = logy? (2.18)

it satisfies
Aoh*(u) =A(u)+1, (A)

that is, Abel’s functional equation for h*(u). The solution of this equation is not
unique, even if we disregard the arbitrary additive constant; however there is a
unique analytic solution (up to an additive constant) with an appropriate regular
asymptotic behaviour when u — 0%. This is shown in [Szekeres, 1958]. The
problem can now be expressed as follows: find 0 < v < b < 1 and an analytic
f:(0,b) — (0,1) such that h*(u) is defined through (2.16) and (2.17) and A(u)
through (2.18), then A(u) is the regular solution of (A). We cannot drop the
regularity requirement without conflicting with the monotonicity of the solution
near b.

The form of the regular solution of (A) depends on the Taylor coefficients of
h*(u) and in particular on the fact that the coefficient of u? in (2.17) is zero.
Assuming that by # —b3, that is, az # 0, A(u) has the form (see Chapter 7)

Alw) =co/ul+ci/utcologu+c+ciu+cou?4---. (2.19)

The coefficients cy can be obtained by formal substitution of (2.17) and (2.18) into
(A). In particular

1 ay 3 az  a’
C72:_—) C_1:—2’ CO:———2 —3 etC.
2a3 as 2 ag a3

For the complete algorithm I used for this procedure, see Chapter 7. The series
(2.19) is not in general convergent; however, it can be an asymptotic expansion.
The additive constant c is free; it is however determined by the boundary condition
f(yb) = b. Similarly vy is determined by the condition f(f(y)) = y2. It follows
from (2.18) that f*(u) = exp(A(u) logy?), hence

fr(x) =
exp [logy*(c_2(b—x) 4+ c1(b—x)""+colog(b—x)+c+ci(b—x) + )]
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and

f(yb+vt) =

2 C2 €1 _ ok
exp |logy B —yi2 + (B —t) + co log(B yt)—l—c—l—ch(B vt) ,
k>1

where B = b(1 —y), and c is determined from
b =exp [logy’(c sB>+c 1B +cologB+c+ciB+coB”+---)].
Writing the expansion for f* in the form
b—t+byt> +bst> +---,

the task is then to determine the coefficients by so that bf = by holds for all k.

2.4.3 Computing the regular and singular solutions

I begin with the principal solution f = fy, of even order N, including the original
Feigenbaum function fy. Given N, I start by fixing the number of terms, n, that
I wish to retain in the expansion (2.4.2), and set tentative values for 0 < b < 1,
—1 < b; <0, by, ...,b,; we may set initially b; = 0 for all 1 > 2, as long as
b; is set reasonably close to its true value. Then I proceed to calculate: firstly
the coefficients a; in the expansion (2.12); secondly the coefficients c¢; in (2.13) by
formal substitution into (S*); thirdly c in (2.13) from

f*(B) =cBN(1+c;B+cyB>+---+cB") =D

where B = b(1 — ) and v = [by|V, and, finally, the coefficients b! in (2.14) by
writing u = B —yt in (2.13), that is

c(B—yt)N+ - +ca(B—yt)NM=b+bit+---+bit" (mod t"*).

Using the Newton-Raphson method [Press et al., 1986] I solve for b; from the
implicit equations b = by, 1 =1,2,... ,n. The required partial derivatives were
computed exactly using automatic differentiation techniques; see Appendix B for
details of this. I also developed software for formal power series computations to
facilitate the series manipulations needed, as described in Chapter 7. The desired
accuracy is deemed to be obtained if repeating the calculation with a higher value

of n does not produce any further change in the value of 'y within an error of 10710,
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n

Y

b

—fn(0)

OO@»-B[\DZ

10
12
14
16
18
20

14
18
23
28
36
38
46
52
62
70

0.1596284403
0.1225016054
0.1000232286
0.0864485340
0.0774460327
0.0710520444
0.0662791902
0.0625809693
0.0596312782
0.0572237129

0.6928352170
0.5753037447
0.5267413888
0.4992100891
0.4812691791
0.4685776493
0.4590940595
0.4517230908
0.4458212181
0.4409842396

0.4877073455
0.8987246525
1.1449080625
1.3121870867
1.4340790413
1.5271883443
1.6007980392
1.6605413729
1.7100498574
1.7517766788

Table 2.6: Properties of regular solutions of the FFE equation

The value of b is fixed by the normalization condition f(0) = 1; if the chosen value

of b gives

f0)=b+) bb'=a#1
i=1
1 i=1,2,...,n. Thisis an

120

then we simply replace b by b/a and b; by b;
equivalent solution satisfying f(0) = 1. The method was used for N =2,4, ...
and the results of Table 2.6 were obtained.

The last column shows that the method automatically produces the principal
(strongly unimodal) solution; this is hardly surprising as the calculation tends to
produce power series with the largest radius of convergence. The second column
of the table lists the number of coefficients used; the higher the order N the more
coefficients were needed to obtain 10 decimal place accuracy. There was no change
in the character of the solution when Epstein’s critical value N = 14 was raised to
N = 20.

For N = 2 the method gave b; = —,/y = —0.3995352805231, the well known
Feigenbaum value. Table 2.7 gives the first 14 coefficients b,,, ¢, when N = 2. The
values of b and c are approximately b = 0.6928352170733 and ¢ =1.8185775134237.

With necessary modifications a similar calculation was performed to obtain
the singular solution f, using the expansion (2.19) instead of (2.13). However,
contrary to the regular solutions, there was no indication of the value of y settling
down to a limit when n was increased. A plot of these results is given in Figure 2.6.

It is known [Kuczma, 1968| that the only meromorphic function possessing a
convergent Abel series is of the form (for some constant c)

. u
W = 1—cu’
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n b Cn
1| —0.3995352805231 0.2232406122039
2| 0.6241085316034e-1 | —0.1345161969489%¢-1
3 | —0.1216873690647e-2 | —0.7480773864376€e-2
4 | —0.4452135369632e-4 | —0.5815968689412¢-3
51 0.1692171258255e-5 0.5127800049896e-4
6 | —0.6802373776624e-8 0.1429043993049¢-4
7 | —0.5999740035799¢-9 0.8321253324135e-6
8 | 0.1268250709217e-10 | —0.9878392016390e-7
9| 0.9928052226669e-14 | —0.1819800467726e-7
10 | —0.4130427107048e-14 | —0.3592277805731e-9
11 0.4642783291487e-16 | 0.1754423135696e-9
12 | 0.7173684857453e-18 |  0.1832070509061e-10
13 | —0.2234733160494e-19
14 | 0.5325272423571e-22
Table 2.7: Coefficients of N = 2 regular solution of the FFE equation
0.03342
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0.03331 ' ' ' | |
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n
Figure 2.6: The approximation to the singular y vs. series length n
with an associated Abel function A(u) = —(cu) . As this h* is not of this form,

its Abel series A and the derived series f are divergent. Although this poses no

obstacle when performing formal power series operations, we cannot expect mean-

ingful results if we simply sum the divergent series f to determine the constants

b, ¢ and 'y. The same problem arises if we wish to compose the divergent series

with a power series containing a nonzero constant term. The divergent series, how-

ever, as shown by Eckmann and Wittwer [Eckmann and Wittwer, 1985], are Borel
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summable. I now briefly explain how I have implemented Borel summation nu-
merically, using an idea due to J.-J. Loeffel [Loeffel, 1976] and developed by [Sokal,
1980]'. I make use of the Watson lemma, that under suitable growth conditions,
if f possesses a divergent asymptotic expansion (as z — 0), f(z) ~ Y_1°, fxz" then
B(t) = Y, fxt*/k! converges in some disk, and f(z) = (1/z) fgo exp(—t/z)B(t)dt.
We may perform the Laplace integral by composing the f series with the conformal
mapping ¢(z) = —pB log(1l — z) for an appropriate real positive constant 3 and

making use of the identities:
f(z) = (1/z) ro exp(—t/z)B(t)dt
= (/2) | exp(-v/z) ¥ fle= (ar
0 k
— (1/2) Y fi | exp(—t/2)(1 - expl—/))Fat
k
_ £ k!
; TI<, (B/z +5)

where fy are the Taylor coefficients of f(—B log(1 — z)). I used this convergent
representation of f(z) for the shift of expansion point (that is, composition with
an affine map), by simply substituting z = b(1 —y) — yt. See Appendix B for a
listing of C++ code for this method. In Table 2.8 I give a table of values of the
computed solution f.

[ obtained in this way the behaviour shown in Figure 2.7. The numerical values
v = 0.0333810598(+5)

and b = 0.391133000(=+ 2), were obtained with 3 = 9. (Here and later the quoted
uncertainties refer to digits in the last place.) These considerably improve the
best known numerical values [Eckmann and Wittwer, 1985|. It thus does seem
very likely from this evidence that a singular solution with the stipulated analytic
properties exists, which is consistent with the proof of Eckmann and Wittwer.
The limiting value of the unstable eigenvalue 6 of (FFE) is also of interest. Sev-
eral authors have estimated this singular & from studies of iterated maps [Thompson
and McGuire, 1988; van der Weele, Capel and Kluiving, 1987; Feingold, Gonzalez,
Magnasco and Piro, 1991]. Eckmann and Epstein [Eckmann and Epstein, 1990]

1See also [Sokal, 1996] for a discussion of the relevance of these ideas to cultural studies.
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X f(x) X f(x)
0.00 1.000000 0.17 | 0.310200e-14
0.01 0.492580 0.18 | 0.176744e-16
0.02 0.225557 0.19 | 0.429463e-19
0.03 | 0.951872e-1 || 0.20 | 0.368697e-22
0.04 | 0.366539e-1 || 0.21 | 0.877693e-26
0.05 | 0.127320e-1 || 0.22 | 0.422290e-30
0.06 | 0.393676e-2 || 0.23 | 0.270164e-35
0.07 | 0.106692¢-2 || 0.24 | 0.130805e-41
0.08 | 0.248909e-3 || 0.25 | 0.221327e-49
0.09 | 0.489402e-4 || 0.26 | 0.443674e-59
0.10 | 0.790972e-5 || 0.27 | 0.223401e-71
0.11 | 0.102015e-5 || 0.28 | 0.287125e-87
0.12 | 0.101355e-6 || 0.29 | 0.289672e-108
0.13 | 0.743558e-8 || 0.30 | 0.928416e-137
0.14 | 0.382695e-9 || 0.31 | 0.102114e-176
0.15 | 0.129853e-10 || 0.32 | 0.420735e-235
0.16 | 0.269163e-12

Table 2.8: Values of the singular solution of the Feigenbaum equation

have given the best rigorous bounds: 29.5128 < & < 29.9571. They also gave a
numerical estimate 6 = 29,5763, but gave no description of how it was computed.
I have computed an estimate of the limiting & using the algorithm of McGuire

and Thompson [McGuire and Thompson, 1982]. We construct the approximants
6TL:XTL+1/XTL) n=0,12,...

where X, = 1/f'(0), and

2n—1
n f<k>(0)
Xn =Y Z f<k>’(0)’
k=1

n > 0.

Here f<%> denotes the kth iterate of the solution to (FFE). This algorithm was
implemented symbolically and simplified using (FFE) and its derivative. See
[McGuire and Thompson, 1982] and [Thompson and McGuire, 1988] for a deriva-

tion of this formula. My best estimate (based on a 120 term series for f) is

d =29.576303(+£1).
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0.0333811

0.0333810

0.0333809

0.0333808 n

0.0333807 : : : : :
20 40 60 80 100 120
n

Figure 2.7: The approximation to the singular vy using Borel summation



Chapter 3

Feigenbaum scaling in complex

maps

Romeo: ‘Mis-shapen chaos of well-seeming forms!’

Romeo and Juliet, act 1, scene 1

3.1 Generalized feigenvalues of mandelsets

In this section, I will discuss generalizations of Feigenbaum’s constants « and 9 to
complex polynomial maps of degree higher than two, and present some numerical
estimates. As in the real case, universality classes are found to depend on the

nature of the critical points of the polynomial.

3.1.1 Introduction

Since the original discovery by Feigenbaum [Feigenbaum, 1979 of scaling properties
of period-doubling in one-dimensional maps, there has been considerable interest
in generalizing the concepts of Feigenbaum constants or feigenvalues 6 and « which
characterize the rate of parameter-dependent period doubling.

As described in § 2.1, the map

x — f(x) = A — [x|4, Ax,deR

has a cascade of bifurcations to 2%-cycles at parameter values Ay, k = 1,2,3,...

which converge asymptotically geometrically to A, at a rate

§(d) = Um(Ax—1 — M) (A — Aer) !

k—o0

37
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with feigenvalue 6(d) depending on the order d of the critical point at zero.

The dependence of § on d and corresponding universality classes of unimodal
maps have been studied in some detail in this thesis and by [Derrida, Gervois
and Pomeau, 1979; Collet et al., 1980; Chang, Wortis and Wright, 1981; McGuire
and Thompson, 1982; Eckmann and Wittwer, 1985; Delbourgo and Kenny, 1986;
van der Weele et al., 1986; van der Weele et al., 1987; Thompson and McGuire,
1988|. For unimodal maps, it is known that modulo power-law conjugacy [McGuire
and Thompson, 1982|, the feigenvalues depend solely on the exponent d of the
critical point. The case of R?> maps has been discussed in Chapter 1.

Complex analytic maps of C and area-preserving maps of R? are known to have
extended universality classes and corresponding feigenvalues for general n-tupling,
where n = 2 corresponds to period-doubling, etc. See also [Branner, 1988] for
an extension to non-analytic complex maps. Cvitanovié¢ and Myrheim [Cvitanovié

and Myrheim, 1983|, for example, studied n-tupling of the complex quadratic map
z— A—27, AzeC (3.1)

and found feigenvalues 6.,/ for n-tupling with winding numbers m/n (m = 1,2,
... n—1) corresponding to eigenvalues crossing the unit circle at exp(2rim/n). I
denote this situation by (n/m)-tupling, omitting the m when it is clear from the
context.

I wish to now describe scaling properties of higher degree polynomial mappings

of the complex plane.

3.1.2 Complex analytic maps

I begin by considering the elementary polynomial maps of integer degree d.
zZ— A— Zd = Q)\,d(Z), }\, zeC (32)

which have a unique critical point (where the derivative of the map vanishes)
at the origin. We are particularly interested in the complex parameter values Ay
corresponding to superstable n*-cycles (that is, cycles containing the critical point)

and the (n/m)-tupling feigenvalue
dm/m(d) = ]}H&)(}\k—l — M) (A — i) (3.3)

We may now define the mandelset M(f,c) to be the subset of the A-plane for

which the orbit (under an arbitrary complex polynomial f) of the critical point c of
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f is bounded. Thus a polynomial has as many mandelsets as critical points. This
generalizes the concept of the ordinary (quadratic) Mandelbrot set, which was first
discovered by Brooks and Matelski [Brooks and Matelski, 1980]. This definition
should be contrasted with that of the connectivity locus defined in [Branner, 1988|
for cubic maps, where it is a subset of C2.

The A sequences above thus lie in the mandelset. The limit points A, of such
sequences lie on the boundary of the corresponding mandelset with intermedi-
ate parameter values for successive n-tupling located at the points of contact of
asymptotically self-similar components of the Mandelbrot set. The self-similarity
has been discussed by Milnor [Milnor, 1989]. Diagrams of some of these general-
ized mandelsets are shown in [Briggs, Quispel and Thompson, 1991]. It is trivial
to show that the mandelset M(A — z¢,0) has (d — 1)-fold rotational symmetry.

Some numerical feigenvalues 6.,/ (d) and &,/ (d) for (n/m)-tupling of equa-
tion (3.2) are given in Table 2.5 with 8.,/ (d) defined by [Cvitanovi¢ and Myrheim,
1983] and, for a map f,) with critical point c of order d,

k k+1 —1
ot/ (d) = lim [c — £ >(c)} [c—f<“ >(c) (3.4)

K00 Ak+1

where f{N~ denotes f) composed with itself N times and Ay is the parameter value
corresponding to the superstable n*-cycle.
More complicated polynomial maps with more than one critical point can also

be studied by the above methods. For example, the map
z' = A +z'(202% — 48z + 30)

has two critical points: at zero with d = 4 and at one with d = 3. The computed
feigenvalues &, /n(d), 0tm/m(4) are given in Table 3.1. In this table c is the critical
point, d its degree and n the tupling value. Forn =2 m=1;and forn =3, m =

1 or 2. Notice the agreement with the elementary d = 3 and d = 4 values.

3.1.3 Feigenbaum equations for n-tupling

The renormalization group method [Feigenbaum, 1979] can also be applied to com-
plex maps [Cvitanovi¢ and Myrheim, 1983| with universality classes of functions

corresponding to n-tupling obtained from solutions of the functional equation

9(z) = xg~"" (z/x) (3.5)
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map djic|n|« d
A —z2 2101 2| —2.502 4.6692
0] 3 | —2.0969 — 2.358281 | 4.600 + 8.9811
A—z3 310]2]|—0.251841.86471 | 3.031 — 4.45561
0] 3 |—1.3812—2.01491 | 15.795 + 0.57581
A—z* 4102 |—1.6903 7.2847
03| —1.9768 —0.63561 | 13.035+ 17.7951
A—2° 510| 2| —1.157+ 1.0991 7.851 —5.3471
A+ ztx 311]2]—0.252+1.861 3.031 — 4.4561
(20z% — 48z + 30) 3 | —1.3812 —2.01471 | 15.795+ 0.57581
410]2|—-1.69 7.2847
3 | —1.97—0.6351 13.035 4+ 17.7951

Table 3.1: Feigenvalues computed directly from equations (3.3) and (3.4)

where g=™ denotes g composed with itself n times and g(0) = 1. For (n/m)-
tupling
_ -1
X = Otmm = [¢=" 7 (1)]

where &,/ is defined by equation (3.4) and the corresponding 4.,/ can be com-
puted from g by an asymptotic functional iteration process or from a related Feig-
enbaum functional equation [van der Weele et al., 1987; Cvitanovi¢ and Myrheim,
1983].

Solutions of equation (3.5) satisfying

g(z) =1+ g1z + O(z%%) (3.6)

yield feigenvalues for universality classes of functions having z = 0 as a critical
point with exponent d. Direct substitution of (3.6) into (3.5) provides one method
of solution. An alternative successive approximation method, due to [van der Weele
et al., 1987], begins with a zeroth order approximation of the form g(z) = 1+g;z%

This method exploits the representation of the solution g as
g(z) = limgk(z)
k—o0
T‘l.k'
gr(z) = pofin 7 (z/(pe)),

where f)(z) = 1 — Az9. This, together with the relations (for n = 2)

g(1) = o (3.7)
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suffices to determine p, , and A, and hence g(z) for period-doubling. I have
solved equations (3.7) by using a Newton-Raphson iteration in three-dimensional
complex space to find W, &, and Ay, in the case n = 2. It was found necessary to
use multiple-precision arithmetic, principally because a large number of iterations
of f (n*, k typically up to ten) are involved, in which round-off error must be
kept under control. With intermediate calculations to about fifty decimal places,
typically four or five correct decimal places are obtained in the final . Note the
agreement between Tables 3.1 and 3.2. There are no real solutions for odd d. In
Table 3.2, d is the order of the critical point of the map f, and the last column
examines a relation suggested by [Delbourgo and Kenny, 1986].

d| o 5 (;251:21]?‘1
2 | —2.502907875 4.669 1.118
3 | —0.25181 £1.8646951 | 3.303 F4.451 | 1.01 £ 0.251
4 | —1.690302 7.28 1.06
0.60556 + 1.50946 2FH.71 0.97 £ 0.141
5 0.8978 +£1.18121 1.3F6.31 0.51 £ 1.51
—1.1568 £+ 1.099141 7.85 F 5.341 1.03 £ 0.061
6 | —1.4677 9.3 1.09
1.015 + 0.95361 0.9 F 6.41 0.0042 £ 0.0561
—0.5188 + 1.40611 6.3 F 8.41 1.07 £ 0.061
7 1.067 + 0.7941 0.7 F 6.51 0.74 + 0.351

—1.12537 + 0.72321 11.1 7 6.01 1.17 + 0.061
—0.0699 + 1.43381 5.0 F 10.71 1.013 £0.11

8 | —1.35798 11 1.02
1.091 £ 0.6771 4.7 F6.61 0.68 £ 0.891
0.23619 + 1.36331 4.0 F 121 1.02 £ 0.081
—0.8950 + 1.07661 10.086 + 8.981 | 1.02 £ 0.041
9 1.102 £ 0.58971 0.47F6.61 0.90 + 0.321
0.444 £ 1.26681 3.0F 1.31 1.06 £ 0.041
—0.5445 + 1.24161 8.7F 1.191 1.04 £ 0.031
—1.250 £ 0.53141 13.5 F6.771 1.04 £ 0.011

Table 3.2: Feigenvalues computed from the functional equation with n = 2

[t is more difficult to compute 6. I used two methods; that of van der Weele
et al. [van der Weele et al., 1987], and that of McGuire and Thompson [McGuire
and Thompson, 1982]. The latter was usually more rapidly convergent. Table 3.2
gives a synthesis of the two methods, based on my experience of the numerical
behaviour of these methods. The results, although inaccurate, are sufficient to

confirm agreement with Table 3.1.
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One interesting feature of this method is that for fixed d > 4 and n = 2 one
obtains multiple complex solutions. Some typical results are given in Table 3.2.
In this particular case it appears that the number of distinct solutions of equation
(3.5) (with n = 2) of the form (3.6) is the integral part of half d. I have confirmed
for the case d = 4,5 and 6, that the points A, appear graphically to lie on the
boundary of the mandelset. These solutions are further studied in the next section.

Asymptotic forms of feigenvalues for large n [Cvitanovi¢ and Myrheim, 1983]
and large d have been suggested by [Delbourgo and Kenny, 1986]. In particular,

the asymptotic relation

. (Qd_ 1)6m/n
o= mm g
M (2d = 2)ad

suggested in [Delbourgo and Kenny, 1986] for real maps appear to be quite accurate
in the complex case even for n = 2 (see the last column of Table 3.2, and also
Table 3.3).

3.1.4 Conjectures

Table 3.2 suggests the following conjectures

1. sign(Im «) = —sign(Im o)

2. limg oo 2 =1

3. limaoe lx(d)] =1

4. RO >0.

for which I know of no theoretical justification, and which perhaps deserve further

investigation.

3.2 Properties of complex universal functions

[ will here examine the properties of complex analytic solutions to Feigenbaum'’s

functional equation for period n-tupling, and the associated Cantor sets.

3.2.1 Introduction

The scaling properties of period-doubling of real maps, first noticed by Feigenbaum
[Feigenbaum, 1979], are now well understood. In most respects, the results have
been made rigorous [Lanford, 1982; Vul et al., 1984; Epstein, 1986; Jiang, Morita
and Sullivan, 1992; Pollicott, 1991]. The same cannot be said about n-tupling
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phenomena (Z > n =2,3,4,...) which occur in parameterized families of complex
polynomial maps.

[ will study the following situation. Let f, be a polynomial depending analyti-
cally on the complex parameter a. Recall that in § 3.1.2, I defined for each critical
point ¢ of f,, the mandelset M(fq, c) to be the set of a values such that the orbit
of ¢ is bounded under iteration of f,. By an n-tupling sequence (n =2,3,4,...) I
mean a sequence of parameter values {ax,k = 0,1,2,...}, such that f,_ possesses
a superstable n*-cycle. Each such ay is a centre of a hyperbolic component of
M(fq,c), that is, a connected region for which f, possesses a stable n-cycle of
constant period. It is observed that for each sequence {ay} of centres of adjacent
hyperbolic components of the mandelset of f, the sequence {(ax 1 —ax)/(ax—axi1)}
is convergent to a value d. The same is true for certain sequences which do not
correspond to adjacent hyperbolic components, such as those lying along filaments
in the mandelset. To distinguish different period n-tupling sequences for the same
N, one may use the winding number of the n-cycle with respect to the fixed point
[Cvitanovié¢ and Myrheim, 1989], or some symbolic labelling scheme [Bai-lin, 1989].

By universality, I mean the conjecture that the constants 0 depend only on the
degree d of the critical point c.

Only the case of quadratic complex polynomials has been studied in detail [Cvi-
tanovi¢ and Myrheim, 1989]. Ideally, one would like a general proof of universality,
along the lines of that of that of [Epstein, 1986] for the real case. However, a
reasonable conjecture (inspired by the analogy with the real case), is that all uni-
versal properties are encoded in the complex analytic solutions of the Feigenbaum

functional equation:

g(z) =g («'z), g(0)=1, &« '=g""(0), (3.8)

<n> ;

where ¢ indicates the n-fold composition of g with itself. Thus Cvitanovi¢ and

Myrheim [Cvitanovi¢ and Myrheim, 1989] studied the solutions of this equation
which behave like

g(z) =1+ g1z’ + O(z")

for small |z|. In this section I will compute other solutions and examine their

properties. In particular, solutions of the form

9(z)=1+) gz = (2<deZ)
k=1
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describe universal features of period n-tupling for polynomials with a critical point

of degree d.

3.2.2 Numerical Methods

It has been proven that (3.8) possesses real analytic solutions for even d [Epstein,
1986; Lanford, 1982]. To my knowledge, there is no proof of existence of complex
solutions. However, numerical evidence is strong that there are solutions for each
integer d > 2. Previously, complex numerical solutions to (3.8) have been com-
puted for d = 2 by a Newton-Raphson iteration [Press et al., 1986] in a certain
space of complex polynomials. These polynomials then approximate the first terms
of the Taylor expansion of g. I have found a similar method successful for d > 2
also. To implement this method, it is first necessary to compute the linearization

of the period n-tupling operator (n =2,3,4,...) !
(TMf)(z) = of<™(2)

“;1 = f<n>(0)
z = f~"7(0)z.

I will use the notation z = « 'z throughout, suppressing the dependence of « on

n where it is clear from the context. It is convenient also to define
(TMV)(z) = £ (2),

that is, T without the « scaling.

[ will denote the composition of functions by simple juxtaposition. I indicate the
linearization of T about an arbitrary function f by L;. To preserve the normalization
g(0) =1, Ly must act on functions h satisfying h(0) = 0. For example, for the

case of period-doubling (n = 2), we have
(Leh) (z) = ogh(1) [2f(2)f'F(2) — o2 (2)] + aef'F(2)h(Z) + aehf(Z).

To compute the general case (n > 2), I first need a few lemmas. Denoting the

linearization of T about f by f_](ck), we have

Lemma 1

L{Vh(z) = hf<"1>(2) + £ 1> (2) L Vh(z).

I This could have been done with algorithmic differentiation methods (Appendix B), but for

reasons of efficiency I chose to make the exact calculation above.
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Proof by induction on n H.

Lemma 2 Suppose that f = g + eh is near a solution g of (3.8). Then

(o) 1 = g™ (0) + e Zhg@ )(g<“>)'(1)] /9'(1) + O(€?).
Proof by induction on n. For n = 2 we have &« = g(1) + eh(1). Now
(™)1 = (g+eh)=>(0)
= (9+eh)°¢$n)i
= (g+eh) [g=™(0) + e(ihgdm) + h(l)(g<“>)'(1)/g'(1)]
= gT(0) + e ihﬁ(l) +h(1)(g<“>)'(1)] /g'(1) +O(e*) W

Next I will to compute the linearization of T. We have

TO(f + eh)(z) = o, T (f+eh)(cxf+€{ z)
= [f“(ocfc:t)eh z) + eLM(f + eh) (o, z)]
+0(€?)

which gives

(L) (2) = [aM2(7)(2) — (o) (2)]

ih <i>(1)—|—h(1)(f<n_1>)'(1)/f'(1)] <n>([_f h)( ).

This result for the linearization of the period m-tupling operator allows us
to compute iteratively Lin) for any n. Approximate solutions to the Feigenbaum
functional equation can now be readily computed by the following procedure. I first
compute a 2-term approximation g(z) = 1+ g;z by inserting it in the Feigenbaum
functional equation and solving the appropriate polynomial equation. For example,

for period-tripling (n = 3), we have
1+ g1(14+g))* (1 +g1)* gl —1=0.

Each solution g; of this equation gives rise to an initial approximation for a Newton
iteration in the space of coefficients {gi, g2, ... , gm}, Wwhere typically m is from 20

to 40. To refine this approximation, I must compute the action of T and L on
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basis elements z* (k =1,2,...,m), and thus represent these operators by m x m

matrices. The Newton-Raphson iteration
g—~g—(Lg—1)"(Tg—g)

can then be performed by standard methods of LU decomposition [Golub and Van
Loan, 1989]. I generally used the technique of increasing the number of coeffi-
cients in the expansion of g one by one, iterating until convergence for each case.
Otherwise some solutions can be missed, because the initial two-term approxima-
tion is not sufficiently close to a solution. I have listed all the solutions found for
d=2,3,...,8in Tables 3.5 to 3.11. Of course, « is immediately obtainable from
g, but 6 is a little more difficult to determine accurately. I used both the power
method to obtain the largest eigenvalues of the matrix representing L, as well as a
packaged algorithm [Smith, Boyle, Klema and Moler, 1970] to compute all eigen-
values. In all cases, both methods agreed. Some of the corresponding feigenvalues
provide a more accurate determination than those computed from orbits in § 3.1;

others are new.

3.2.3 Asymptotics

The numerical difficulties of this type of computation increase rapidly with d and n.
[ was not able to exceed d = 8. However, this was enough to discern the interesting
trends visible in Figures 3.1 and 3.2. It appears that there is a ‘principal’ sequence
for which o¢ tends to a limit about —2 — 7.161, and a secondary sequence with a
limit less easily estimated.
I also checked the conjecture of [Delbourgo, 1992] that suggested that
d—1
d—1/2°

This was indeed accurately obeyed, as shown in Table 3.3, though I am aware of

5/t ~

no rigorous justification for this asymptotic relation.

3.2.4 Theory

In this section I will outline a theory for complex universal functions based the case
of real quadratics as presented in [Vul et al., 1984]. For d =n = 2, equation (3.8)
has a locally unique solution [Lanford, 1982]. It possesses the following properties,
which have been established by numerical estimates with rigorous bounds ([Koch
et al., 1994]).
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d|(2d—1)8/((2d — 2)ad)
2| 1.1180

1.2625 + 0.84631
0.9628

0.9198

3 | 1.0120 — 0.24261
0.9493 + 0.13301
0.9924 + 0.01391
41 0.9721 4 0.29051
1.0411

0.9304 + 0.16111
1.0213 + 0.11121
0.9912 + 0.01681
1.0138

0.9625 + 0.05591
5 | 0.9487 + 0.30961
1.0311 + 0.06161
6 | 0.9334 + 0.31871
1.0198 + 0.08671
1.0228

71 0.9226 + 0.32351
1.0160 + 0.10191
1.0242 + 0.02481
8 | 0.9145 + 0.32621
1.0215 + 0.04391
1.0113 +0.11191

Table 3.3: Test of Delbourgo’s conjecture

1. g is an even, unimodal, convex function

2. |gl < 1 for |z| < 1.

3. g has a single unstable fixed point in |z| < 1.
We now construct the sets

Af = [, —a™, k=1,2,3,...
A¥ = g (AY), i=1,2,...,2—1.

Then the set

oo 2n—1

fEﬂUAQ

n=1 k=0
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-6.8

73 | | | |
-2 -1.5 -1 -0.5 0 0.5 1

Figure 3.1: A sequence of powers & for period-doubling
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Figure 3.2: Another sequence of powers o for period-doubling

is shown in [Vul et al., 1984] to be a Cantor set, which is invariant and attractive
under g. Additionally, g restricted to F possesses an invariant measure with respect
to which g is ergodic, and a Hausdorff dimension Dy &~ 0.538. I emphasize that
these results can be considered rigorous, but that they do depend on numerical
estimates.

Unfortunately, in the general complex case these properties cannot all be sat-
isfiled. For example, we can no longer have |g| < 1 in any neighbourhood of 0,

since g(0) = 1 and g is analytic. Also, it appears that the intervals A7 cannot be
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replaced by simple sets such as disks. Nevertheless, if I define A = {g=*>(0),k =
0,1,...,n—1}and A, = {z € A,z = g*>(0),k = m(modn)}, then we have a
disjoint partition of A, with Ay = g(Ax1),(k =1,2,...,n—1). (This forms a

Markov partition.) We may now define surjective analytic maps
fk — ocg<(nfk)m0dn> . Ak S A

for k=0,1,... ,n—1.

The sets Ay allow us to assign a symbol sequence [;I, - to each orbit of g,
where I; = k iff the jth element of the orbit belongs to Ax. By a prime word,
[ mean one that cannot be written as a product of shorter cycles of length > 1.

Figure 3.3 depicts the situation for period-tripling (n = 3).

Ay Ay Ay

x =" xgg = f; ag = fy

Y

A A A

Figure 3.3: The dynamics of g for period-tripling

All the numerical solutions g computed by the method above possess the fol-

lowing properties:
1. The orbit of the origin is bounded.

2. For each prime word, there is an orbit of g with the corresponding symbolic

dynamics.
3. The maps fy are expanding on Ay.

I have found the last condition to be easily satisfied by all the solutions g that I
have computed to the Feigenbaum functional equation.

With these properties satisfied, I will apply the (—function formalism [Artuso,
Aurell and Cvitanovié, 1990a; Artuso, Aurell and Cvitanovié, 1990b] to compute

topological entropies, Hausdorff dimensions, etc.
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3.2.5 (—function methods

In this section I use the technique of symbolic dynamics to generalize the (—function
method of [Artuso et al., 1990a], to complex maps. The (Ruelle) (—function is
defined as

) =]]0-2"t).
P

Here the product is over prime cycles, n, is the number of prime cycles of length
Ipl, and t,, depends on the application to be made of the {(—function [Artuso et al.,
19904]. For example, I will calculate the generalized dimension spectrum D(q) by
putting t, = 1/|A,|9, where A, is the stability of the prime cycles with word p.

For each solution g of the Feigenbaum functional equation that [ have found
for period-doubling and period-tripling, I computed all the prime cycles to length
6 and 4 respectively. This was achieved by a Newton iteration, for which the initial
approximation was found by linearizing the appropriate composition of functions
fx as defined above, and solving the resultant linear system. That is, defining the
‘centre’ ¢y of Ay by cx = g<¥>(0), we have that the linearization fy(z) = axz + by

of fi at ck is uniquely determined by

frle) = 1

k—1
filc) = fule) =] ] g'a(g7(0)),
i=0

so that fx(z — cx) = fu(z — cx)) + O((z — cx)?). Then the zero of the (—function
was found by a standard bisection algorithm [Press et al., 1986]. The resulting
functions D(q) were normalized by dividing by the known exact value D(—o0) = «

to facilitate comparison. The results for d = 2, 3,4 are shown in Figure 3.4.

3.2.6 Conjectures

In [Cao and Peng, 1992], Cao and Peng have claimed to have shown a further uni-
versality phenomenon; namely that the normalized D(q) curves are independent
of the integer n specifying the n-tupling. However, I find a small difference (vis-
ible in Figure 3.4) which I believe is not attributable to numerical imprecision or
insufficient length of my (—function expansions. However, the differences are less
at larger d, and the Hausdorff dimensions appear to converge to a universal value,

approximately 0.7, independent of n, for large d.
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d=2
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Figure 3.4: Normalized dimension spectra vs. q for d =2, 3,4
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#In=2 |n=3
110 0
2|1 1
3110 2
41100 10
51110 20

6 | 1000 21

7 | 1100 100

8 | 1110 200

9 | 10000 | 110

10 | 11000 | 210
11 | 10100 | 120
12 | 11100 | 220
13 | 10110 | 112
14 | 11110 | 221
15 | 100000 | 1000
16 | 110000 | 2000
17 1 101000 | 1100
18 | 111000 | 2100
19 | 101100 | 1200
20 | 111100 | 2200
21 | 100110 | 2010
22 | 101110 | 1110
23 | 111110 | 2110

24 1210
25 2210
26 2011
27 2120
28 1220
29 2220
30 2111
31 2211
32 2212

Table 3.4: Prime words to length 6 for period-doubling, and to length 4 for period-
tripling
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d

=2

—2.5029078758
4.6692016098
0.53805

I

—2.0969198891
4.6002246075
0.6705

+2.35827964141
—8.98122584101

—9.2773411158
55.2470265888
0.3503

—38.8190742971

924.0840897220

Table 3.5: Computed & and Dy for d =2

=3

—0.2518110538
3.3030825654
0.6304

—1.86469532101
+4.45556536501

—1.3812446902
15.7949041805
0.701

+2.01497783321
—0.57581455851

0.5550478650
—1.1739000990
0.7327

—2.07742988391
+11.7695705841

1.0637879021

—35.1902921171

0.428

+4.18128728811
—50.5414847311

n
2 o
1)
Dy
3| «
)
Dy
3| «
)
Dy
4] o
1)
n
2| o
1)
Dy
2| o
1)
Dy
3| o«
)
Dy
3| o
1)
Dy
3| o
1)
Dy

I

—1.0063122570
36.4878477641
0.445

—3.97429793871
+40.77131043771

Table 3.6: Computed &« and Dy for d =3

a3
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n d=14

2| « = 0.6055533369 41.50946943801
d = 2.0014174483 —5.74661617881
Dy = 0.669

2| « = —1.6903029710
d = 7.2846862172
Dy = 0.643

3| « —1.9768080555 +0.63567083361
) 13.0355603861 —17.7951408151
Dy = 0.75

3| « = 1.0500981936 +1.42543356121
o —3.1339521925 —11.8989991571
Dy 0.77

3| « = 2.0473566198 +2.23048871641
d = —64.0574900213 —22.8450337821

3| « = —2.8862481542 +40.81697470571
o = 38.8250937062 —59.7948341891
Dy = 0.49

3| « 0.7724764592 —2.73443235831
) 24.2205911707 +49.8135850291
Dy 0.506

3| « = —3.1521573432
d = 85.7916290911
Dy 0.471

3] « = 1.7157307246 +2.82490466701
o = —51.9232855393 483.8406761191
Dy = 0.45

Table 3.7: Computed « and Dy for d =4

3.3 The area of the mandelset

I conclude this chapter with an amusing speculation on the area A of the (ordinary
quadratic) mandelset M(z% + ¢, 0) defined in § 3.1. Around 1993 there was consid-
erable interest in this question, stimulated by a distributed internet computation
(based on pixel counting) organized by Yuval Fisher and Jay Hill [Fisher and Hill,
1993]. Previous to this, there had been some rigorous bounds computed in [Ewing
and Schober, 1992|, which, however, were done by extremely slowly convergent se-
ries methods. [Ewing and Schober, 1992] obtained the area bounds 1.3744 < A <
1.7274, whereas [Fisher and Hill, 1993] obtained 1.5031197 < A < 1.5613027.
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[t is important to emphasize that this is not a natural question. The area of the
Mandelbrot set is not a holomorphic invariant; indeed the area of domains in com-
plex analysis cannot be expressed without making use of the complex conjugate, a
non-analytic concept.

Nevertheless, I could not resist making an independent contribution to the
debate in 1993, and [ proceeded by computing very accurately the area of all regions
of period less than 9. I achieved this by calculating with Maple the polynomials
defining the boundaries of the hyperbolic components, and then doing a numerical
area integration (by triangles) giving results accurate to at least 8 decimal places.
[ obtained the results of Table 3.12.

I was impressed by the fact that these data, when plotted on log scales, fell
very accurately on a straight line. I still have no idea why such a behaviour should
occur. The slope estimated by least-squares was -2.8002. That this trend continues
to higher periods can be seen on the graph in Figure 3.5 of the results of [Fisher
and Hill, 1993].

10 ¢ — :
1.0 b
0.1}
0.01 |
1e—3;

le-d |

le-5

le6 | ' I ' —_—
1 10 100
period

Figure 3.5: The area of mandelset components vs. period

Assuming that the area of all periods greater than 8 may be estimated by a
tail correction based on the assumption that this trend is correct, I obtained a
total area estimate of 1.49969. I suspect this is more accurate than Fisher and
Hill’s pixel-counting, which must always over-estimate the area. It suggests the
intriguing conjecture that the exact area is 3/2. However, this question is not

important enough to spend any more time on.
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n d=5
2 | « = 0.8978292495 41.18126492931
o = 1.3142736789 —6.24219021641
Dy = 0.67
2 | « = —1.1568197586 +1.09914128501
o = 7.8514513431 —5.34725395551
Dy = 0.648
Table 3.8: Computed & and Dy for d =5
n d=
2| o« = 1.0153549578 40.95354991481
o = 0.9185291354 —6.48386950181
Dy = 0.66
2| « = —0.5187961798 +1.40611050861
o 6.2543342897 —8.49145366741
Dy 0.69
2 | « = —1.4677425684
d = 9.2962417948
Dy = 0.7
Table 3.9: Computed & and Dy for d =6
n d=
2 = 1.0674967558 40.79388586941

|

|

0.6709769811
0.7

—6.62113354841

—0.0699141311
5.0540369278
0.7

+1.43380988431
—10.7069827101

o
)

Dy

2| o
1)

Dy

[0

1)

Dy

—1.2537057995
11.0619587435
0.66

+0.72326781071
—6.00018889061

Table 3.10: Computed & and Dy for d =7
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1.0914792239
0.5059767933
0.69

+0.67767825771
—6.70736677121

—0.8950592016
10.8510657319
0.70

+1.07658250591
—8.98395106391

0.2361759477
3.8765989539
0.7

+1.36334246811

—12.15433202881

n
2] o
1)
Dy
2 o
1)
Dy
2 o
1)
Dy
2| «
1)
Dy

—1.3581941166
10.9524291007
0.7

Table 3.11: Computed & and Dy for d =8

period area/ cumulative total
1 .3749999995 3749999995
2 0624999999 4374999994
3 0179980106 4554980100
4 .0074087064 14629067164
5 .0041747693 4670814857
6 .0028440321 14699255178
7 .0016099799 AT715354977
8 .0014222118 4729577095

Table 3.12: The area of mandelset components by numerical integration

57
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Chapter 4
Scaling in circle maps

Jaques: “Tis a Greek invocation, to call fools into a circle’
As You Like It, act 2, scene 5

In the first part of this chapter I discuss corrections to Feigenbaum-Kadanoff-
Shenker scaling in circle maps. I then discuss the question of the asymptotic
limits of the Feigenbaum-Kadanoff-Shenker « and § constants. Finally, I discuss a

generalization of Manton-Nauenberg scaling in the boundary of Siegel domains.

4.1 Introduction

In this chapter [ will study the Feigenbaum-Kadanoff-Shenker scaling in the critical

family of circle maps on R:
1
0— fa(@)=Q+0— %sin(%re). (4.1)

This case (degree of inflection point equal to three) has been much studied ([Tzeng,
Yu, Hu and Hu, 1991; Kadanoff, 1981; Shenker, 1982; Feigenbaum, Kadanoff and
Shenker, 1982; Jensen, Bak and Bohr, 1983; Cvitanovi¢, Shraiman and Soderberg,
1985; Cvitanovi¢, Gunaratne and Vinson, 1990], but here I wish to generalize to
different degrees of the point of inflection, and to discuss corrections to scaling.
The average advance in the angle 0 per iteration is called the winding number w.
Denoting the nth iterate of f as f<"~, we can define wy as the limit:

<n> o
i) = 1o 7 (E0) =00
n—oo

(4.2)

29
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for some initial 6. If w¢(Q) = p/(q is rational, where p and q are positive integers,
the map represents mode-locked behaviour with period (.

From the work of Denjoy [Denjoy, 1932], Arnol’d [Arnol'd, 1963; Arnol’d, 1965],
Herman [Herman, 1979] and Yoccoz [Yoccoz, 1984|, we know that if f is invertible,
then w(Q) is a monotonic increasing function of Q and is independent of the initial
value 0. It is, however, constant on a dense set of subintervals, and its graph forms
a so-called ‘devil’s staircase’.

It is well known that every irrational number w can be represented by an infinite

regular continued fraction

w=[a;,as,as,...] = , (4.3)

a +

1
an+

and that the sequence of best rational approximations p,,/q. to an irrational num-

az+ -+

ber w is found by truncating the continued fraction:

Pn/dn = lai, s, ..., anl. (4.4)

This is the classical Euclidean algorithm.
Considering now the case of the sine map defined in equation (4.1), we may

define a sequence {Q),,} by means of

f<qn>

On (0) = Pn,y

so that there is a qn-cycle containing zero with winding number p,/q,. This
scheme was first proposed by Greene [Greene, 1968; Greene, 1979].
I first consider the golden mean (gm) winding number, which has a continued

fraction expansion

Wom = =[1,1,1,...].

1
14+---

By successively truncating this infinite fraction, one generates a sequence of rational

14+

approximations 1/1,1/2,2/3,3/5,... to Wgy. The nth term in this sequence is

fn_1/f. where the f,, are the Fibonacci numbers. These are defined recursively by

fn+1:fn+fn71; TL:1,2,3,..., f():O, flzl
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From this it follows that

lim ot = Wom. (4.5)

n—oo fn

From the corresponding sequence {Q,}, we may define the Feigenbaum(-Kadanoff-
Shenker) & by

AQ;
5 =lim !
j—o00 AQ]'-H

which has the approximate value -2.834. There is also an orbit scaling: if ¢y is the

value of the nearest cycle element to zero in the gy cycle, then

R ()
o= lm

exists, and is about -1.289. I now will compute more accurate scaling laws, following
the method of § 2.3.

4.2 Corrections to scaling

I postulate the following forms for the behaviour of AQy and ¢y:

AQk = Z%
i=0 1
0 bl
Cbk = Z@

Il
<)

RE

To determine the validity of these expansions, I used a polynomial map behaving
like sign(0)|6|¢ near zero for each value of d. I accurately computed from four to
eight of the quantities 6; and «; for about 50 values of d between 1 and 35. Here d;
and «; are the constants to be determined, with 8y = & and g = «. The exponents
are named in order of increasing magnitude. It is necessary to compute typically
25 parameter values )y, for which [ used a Newton-Raphson iteration method. I
then computed the exponents by the method described in § 2.3.2, always using
high precision arithmetic. The results are shown in Figures 4.1 and 4.2. In these
figures, the solid line is the dominant scaling exponent. The results are not very
different from those previously obtained for maps of the real line in § 2.3, but are

much more difficult to compute accurately.
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Figure 4.1: The scaling exponents o vs.
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d at the golden mean
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14

16

18

20

Figure 4.2: The scaling exponents d; vs. d at the golden mean

4.3 The Feigenbaum-Kadanoff-Shenker function-

al equation

While the Feigenbaum functional equation characterizes the period-doubling route

to chaos, the Feigenbaum-Kadanoff-Shenker equation [Feigenbaum et al., 1982]

gog(e’x) =eg(x), €<0

(FKS)

characterizes the quasiperiodic route to chaos. This transition is modelled by a
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1.0

0.8 | i
0.6 - i
04 r i

gs(x) 02 F —

0.0

-0.2 -

-04 N

-0.6 | | | |
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 4.3: The solution of FKS for N =3

system consisting of two coupled oscillators with irrational frequency ratio, in this
case, the golden mean (v/5—1)/2. For background to this subject, see [Feigenbaum
et al., 1982; Ostlund, Rand, Sethna and Siggia, 1983; Rand, Ostlund, Sethna and
Siggia, 1982]. Note that € is here the reciprocal of the constant « used by [Feig-
enbaum et al., 1982]. Though a large amount of research has been devoted to this
situation, nothing has been done on the asymptotics of the functional equation,
which [ propose to discuss in this section.

Using the standard normalization, the graph of g decreases monotonically from
g(0) = 1 to its inflection point g(b) = 0 for some 0 < b < 1 and then decreases
monotonically to g(1) = €. The existence of solutions has been shown by Mestel
[Mestel, 1985|, Lanford [Lanford, 1984 for N = 3, and Eckmann and Epstein
[Eckmann and Epstein, 1986] for N = co.

Performing the same power conjugacy transformation as for (FFE), one can
proceed to define and denote the principal solutions of order N by gn and the
singular solution by g... See Figure 4.3 for a plot of the function g3.

We thus have

where 0 < €2 <|e/ <b<1for N >1, and
gog(e?) =¢€* g(e’) =D, (4.6)

from the substitution of x =1 and x = b respectively into (FKS).
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Since the solution may have a singularity at b, we must consider two distinct
analytic functions on either side of b. Let v(x) be the restriction of gto b < x < 1
(g will denote the restriction to 0 < x < b) then (FKS) takes the form

gog(e*x) =ev(x), for b<x<1 (4.7)
and
vog(e?x) =eg(x), for 0 <x<b. (4.8)

We can eliminate v from (4.7) and (4.8) by setting x = g(€?y), 0 <y < b (hence
b < x < 1); then (FKS) becomes

gog(e’g(e*y)) =¢€*, gly) 0<y<b, (FKS1)

an equation which only involves g : [0,b) — (0, 1].
Differentiating (4.7) and (4.8) and substituting x = 1 and x = 0 respectively
we find (assuming g'(0) # 0 and ¢’(0) # oo) that

e?g' o g(e?)g'(e?) =1. (4.9)

Any solution of (FKS1) which satisfies g(0) = 1 and hence (4.6) must satisfy (4.9).

[ now perform a construction exactly analogous to that in § 2.4.2, to which
reference may be made for more detail. I denote by g, the restriction of g to the
interval I, = [e?*"?b,e?*b), k = 0,1,2,..., then g(e®*y) = gxi1(€e?y) > b for
y € Iy (since g(e’b) = b), e’g(e’y) > €’b, g(e*g(e*y)) = go(€*grt1(e?y)) and
go gole®grs1(€’y)) = €’g(y) < €* = gog(e?). Hence go(e’gis1(€®y)) > €’b and
(FKS1) becomes

go © go(€®grt1(€*y)) = €®gi(y) for y € Lk (FKS2)
and in particular
do © go(€°g1(€’y)) = €’go(y) for y € Iy =[e’b,b). (FKS3)

As with (FFE) the problem is to determine gy so that g; is be the analytic contin-
uation of gg. Then, (FKS2) is an equation for the analytic continuation of gy over
the whole interval [0, b). I now focus solely on (FKS3).

Since g(e?b) = b and g is supposed to be analytic at €2b, we may set

g(e’b+e’t) =b+bit+byt?’ + ..+ with b; <0
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and assume convergence of the series for some |[t| < 1, T > 0. Next set P(x) =
g(e*x), h(x) = W(P(x)); then, writing g for both gy and g;) (FKS3) takes the

form
goh(x) = e’g(x), (S)

that is, Schréder’s functional equation for h. As h(b) = b, we again transform the
fixed point to u = 0 by defining h*(u) = b — h(b —u), g*(u) = g(b —u); then
h*(0) =0 and

g" oh’(u) = e’g*(u), (5%)

We have arrived at exactly the same functional equation as when we were solving
(FFE). The procedure for solving (S*) for g* is almost exactly as outlined earlier
but with a few differences. The Taylor expansion of h*(u) takes the same form as

(2.12). If b? is not one then (S*) has a convergent solution of the form
g"(u) =cuM(l +ciu+cou +-- ) (4.10)
and the coefficient of uN gives b2N = €2,
€= —|b1|N> b, = —|€|1/N-

The constant ¢ in (4.10) is determined from the condition g*(b — €*b) = b, while
b is adjusted so that g*(b) = 1. Substituting u = b(1 — €?) — €2t into (4.10) we

can transform back to centre €b and obtain
g(e’b+€’t) =b+bit+bjt> +--- (4.11)

and equate the coefficients by with the original coefficients by. See table 4.1 for a
range of regular € and b values obtained by solving the Schroder equation derived
from (FKS).

If b? is one, it is again necessary to use Abel’s functional equation instead of
Schroder’s. The procedure for solving Abel’s equation in this instance is exactly
as that set out for solving the singular (FFE) equation with the exception that the
substitution u = b(1 — €2) — €2t is used to transform back to centre €?b and the
conditions g(e?b) = b and g o g(€?) = €? serve to determine c and e.

The singular series solution for the (FKS) equation shows the same divergent

properties that characterize the singular (FFE) solution. However, after applying
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n

€

b

—gn(0)

3
23
29
39
49
29
71
89
98

N RS R Nt SR s

—0.6180339887
—0.5188837225
—0.4673813162
—0.4349284204
—0.4123238695
—0.3955620152
—0.3825838027
—0.3722105156
—0.36371399

0.6180339887
0.5496018421
0.5178627069
0.4991137721
0.4866077115
0.4776221430
0.4708314423
0.4655075010
0.46121511

0.6180339887
0.9052865510
1.0728988866
1.1844018525
1.2645217061
1.3251266285
1.3726956939
1.4110920617
1.44277302

Table 4.1: Properties of regular solutions of the FKS equation

-0.2750255

-0.2750260
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-0.2750265

-0.2750270
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Figure 4.4: The approximation to the singular FKS € vs. series length n

the Borel summation techniques as used in § 2.4.3, good numerical stability is

achieved, and I can confidently state that the singular FKS € is

—0.275026971(£3),

and the value of b is 0.420056641(+ 3). Figure 4.4 illustrates the behaviour of the

singular FKS € as more coefficients are added to the expansion of g.

Regarding the question of the Feigenbaum & for this situation, Dixon [Dixon,

1997] has derived an analogous procedure to the McGuire-Thompson method of
§ 2.4.3. Dixon obtained an estimate &~ —4.121326(+4). Now Hu et al. [Hu, Valinia

and Piro, 1990] have previously obtained a value of —4.11 from orbit studies of the



4.4. MANTON-NAUENBERG SCALING 67

non-smooth map

fo(t) = Q+ % [t + sign(t) exp (g _ %)} . (4.12)

As T suspected that the discontinuous derivatives of this map at the endpoints of
the interval were affecting the results, [ constructed the following C* map the
_11

interval [—3,5):

folt) =Q+ sign(t)z (1 + —) exp <_—1> (4.13)

which has an essential singularity at the origin. From orbit calculations (taken
to the 29th Fibonacci number) of this map, I estimated  ~ —4.121 using Padé
analysis techniques, in better agreement with Dixon’s value than the results of [Hu

et al., 1990]. See also [Dixon, Kenny and Briggs, 1997] for more recent results.

4.4 Manton-Nauenberg scaling

Manton-Nauenberg scaling occurs on the boundary of Siegel domains, that is, on

the boundary of regions on which maps of the form
f(z) = exp(2miQ)z + O(z?) (4.14)

are conjugate to their linear part. Inside the Siegel domain, orbits have quasiperi-
odic motion on smooth Siegel curves which are analogous to the KAM tori in
area-preserving maps. However, at the boundary, the curves become non-smooth
(indeed, fractal) and the scaling is different, as described below. The connection
with circle maps in § 4.1 will be apparent.

Siegel considered linearization of maps of the form of equation (4.14) by means
of Schroder’s functional equation (see Chapter 7), and when Q is diophantine, so

that we have
f(o(z)) = o(exp(2miw)z)
and
QO —p/ql >A/q"

for all integers m,n > 1 and for some positive A, u € R. Here o is the Schroder

function of f.
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The Manton-Nauenberg scaling then arises when we consider a sequence p./qn
of rational approximants converging to Q. If these are generated with the Euclidean

algorithm (4.4), then we observe that
f<qn>(Zc) ~ Zc —I_ A(X_n

as N — oo. Here z. is a critical point of f (that is, f'(z.) = 0), and A and « are
constants, depending on Q only . Manton and Nauenberg [Manton and Nauenberg,
1983] found that for Q equal to the golden mean ¢, || was about 1.34783. In the
golden mean case, we have q,, = f,,, the nth Fibonacci number. This was confirmed
by [Widom, 1983] and [Osbaldestin, 1992|, and later Stirnemann [Stirnemann,
1994b; Stirnemann, 1994 a| proved rigorously that this scaling law is indeed correct.

My purpose in this section is twofold: firstly, to show that the estimation of
o by ratios is incorrect in [Osbaldestin, 1992] in this situation; and secondly to
investigate the corrections to scaling problem, with an analysis analogous to that
in § 2.3. A new phenomenon will be found to occur: the presence of two complex
scaling exponents of equal modulus. This does not occur in any n-tupling situa-
tion, and its occurrence in this situation has apparently been missed by previous
investigators.

Rather than using the polynomial map f, we may more generally consider the

rational map of degree d € Z*

_czi+b
T azd 417

f(z)

Osbaldestin [Osbaldestin, 1992] then defines « by lim,, zq,, /Zq,,_, and shows that

h;[n' Zgon 1/ Zasn = 111111 Zaon/ Zqonsr -

I have computed orbits (for ¢ = exp(27id), d = 2 and a = 0) and made a
Padé analysis to recover the scaling exponents, as described in § 2.3.2. It is quite
clear that there are two dominant scaling exponents & = +1.347831995. Note that
these are real, and equal absolute value. How then, do we explain Figure 2 in
[Osbaldestin, 1992] which shows a nonzero imaginary part to o ?

It is because in this case, the ratio method does not recover « correctly, only

|t|. We can see this as follows. If

Zq, ~Ax™ +B(—ax)" + - as n — oo
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then
Zgn Ac™ + B(—o)™ +
Zgn s Ao L+ B(—a)™ !
A+ (—1)"B
a—
A—(—1)"B
. oc% +--+ mMmeven
&g + -+ modd

Thus if [(A + B)/(A — B)| = 1, the ratio method will compute the correct ||, but
the computed phase will involve the uninteresting amplitudes A and B, which is
not as desired.

The ‘phase’ of & observed in the ratio method is, however, correctly predicted
from the Padé amplitude. We may compute the Padé amplitude by L'Hopital’s
rule: Let p(x)/q(x) be a Padé approximant to )z, x™; then for each root r of

g(x) we compute:

L, A= 1)p(x))/dx
T Tq'(x)

I found numerically (with a [6,6] Padé approximant) that for r = 1.347831995,
this gives an amplitude A = —0.400145347 4+ 1.2870641, and r = -1.347831995, the
amplitude is B = —0.400145347 — 1.2870641 (which is Osbaldestin’s complex «)
with (A + B)/(A — B) =0.9999997.

I next used Padé approximants to study variation of & spectrum with d, and

a = 0. It unambiguously shows that the dominant scaling is always
Zq, ~ Ax™ + B(—a)"

with A, B complex, « real, and |[(A — B)/(A + B)| = 1. If this is the case, the ratio
method will give
limzg,/2q, , = ®(A £B)/(A F B)

which explains the observed odd/even behaviour, but shows that the nonzero phase
of « is purely an artifact of the inappropriate use of the ratio method to estimate
«. In other words, the ratio method assumes that the scaling exponent of smallest
modulus in unique. If it is not, the result has amplitude information mixed in.
Arneodo and Holschneider [Arneodo and Holschneider, 1988] have predicted
on the basis of the thermodynamic formalism that |c(d)|® = |x(1/d)|. This is

confirmed by my approximate data, as shown in Table 4.2.
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d |« Bk
1/8]1.902372

8 1.895929
1/4 | 1.884893

4 1.884626
1/2 | 1.816651

2 1.816623

Table 4.2: The Arneodo and Holschneider conjecture
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Chapter 5

Scaling in torus maps

Othello: ‘Chaos is come again’
Othello, act 3, scene 3

In this chapter I will discuss the generalization of the ideas on scaling in circle
maps (Chapter 4) to the two-torus T?. This will require a discussion of simulta-
neous rational approximation methods and two-dimensional analog of the Siegel
linearization theorem. In the investigation [ found several potentially useful lines of
enquiry not mentioned in the existing literature. I have made use of these results
in two ways: firstly, to generalize the Feigenbaum-Kadanoff-Shenker circle map

scaling, and secondly, to try to generalize the Manton-Nauenberg scaling (§ 4.4).

5.1 Maps of the two-torus

[ wish to examine the dynamics of families of maps

e (G])

of the plane R?, parameterized by Q € R?, which satisfy

o3 )=l 17]

for all integers m,n. By identifying opposite edges of the square (—1/2,1/2) X

X+m

y+n

(—1/2,1/2), we can consider this as a map of the two-torus T2. This will model

73
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three-frequency mode-locked systems, as described in [Hu and Mao, 1987|. If for

some X, Yy, () and positive integers p,p2, q we have

w([3])-

then we say the orbit has rotation vector, (or, loosely, winding number) (p1, p2)/q-

X+ P1
Y + P2

)

The bifurcation behaviour of such maps has been fully described by [Baesens,
Guckenheimer, Kim and MacKay, 1991].
In [Hu and Mao, 1987], Hu and Mao attempted to generalize the Feigenbaum-

Kadanoff-Shenker circle map scaling by considering a map of the form

X X+ O — & sin(2mx) cos(2my)
fo = S (5.1)
y Y+ Qy + 5, sin(27x)
and a polynomial approximation to it:
X x+ O, — Kx(1 —4x2)(1 —y? + 2y*
y Y+ Qy + Kx(1 — 4x2)
They generalized the Fibonacci recurrence by using
frys = frpe + frpr + oy fo=1=0,fs =1, n=01,2,... (5.3)

on the grounds that it is ‘the simplest possible ternary continued fraction expan-
sion’. On the other hand, Kim and Ostlund [Kim and Ostlund, 1985; Kim and
Ostlund, 1986] used

fn+3:fn+1+fn> fO:flzo,f2:1, n=0,1,2,.... (54)

These authors looked for scaling by examining the eigenvalues of a two-step scaling

b b
matrix diag( [ ¢ ] , [ ¢ 4 ] ) defined by solving

c d C

AQ,(n—1) ab 00 AQ, (M)
AQyn—1) | | c d 0 0 AQy(n)
AQ,(n—2) 0 0 ab AQ,(n—1)
AQy(n—2) 0 0 ¢ d AQy(n—1)

for {a, b, c, d}, where

AQ,(n) =0, n)—0Oy(n—1) n=2234,...
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etc., and (Qy(n), Qy(n)) are the parameter values for which the orbit of (0,0) has
rotation vector (f,_1,fn_o)/fn '. None of these authors found critical scaling; that
is, with K =1, so that the map is noninvertible in a neighbourhood of zero. This is
hardly surprising as the recurrences (5.3) and (5.4) have no theoretical justification,
apart from an appeal to the imprecise concept of the ‘most irrational pair’.

Note, however, that Hu, Mao, Kim and Ostlund did not consider best approx-
imants. (P;/Q,P2/Q) is said to be a best approximant to (¢, §o) if

max(|qd: — pil, [ad2 —pal) > max(|Qd; — Pyf,|Qd2 — Pyf)

whenever p; < P1,p2 < Py, q < Q. Since one-dimensional continued fractions do
produce best approximants, I decided to see if a similar idea could be used in two

dimensions.

5.2 Simultaneous rational approximation

There is a vast literature on simultaneous rational approximation ([Szekeres, 1970]
and references therein). In this literature, cubic number fields play a central réle.
A cubic number field [Cohen, 1993] is a set

{ap+ a1+ ayl® | ap, a;, a; € Q},

where ( is a root of a monic irreducible cubic polynomial with integer coeflicients.
Every cubic number field K has a discriminant denoted d(K), and the discriminant
of the defining cubic (that is, [(z; — z2)(z1 — z3)(2z2 — 23)]?, where z,, z, z3 are the
roots of the cubic) is always a squared-integer multiple of d(K). The cubic number
field is called cyclic if the discriminant of its defining cubic polynomial is a square.

Thus the linear recurrence (5.3) has characteristic polynomial

22—722—z—1

which has discriminant —44 and generates a field with the same discriminant,
whereas the recurrence (5.4) has characteristic polynomial

22—z—1

!Note that in [Hu and Mao, 1987], . and . — 1 are reversed in equation (3.49), and that Hu

and Mao do not explicitly state that they use a two-step procedure as above.
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which has discriminant —23, again the discriminant of the generated cubic number
field. The number 23 is in fact the smallest possible absolute value of the discrim-
inant of any cubic number field, which is an intriguing analog of the fact that the
golden mean in one dimension is associated with the quadratic number field Q(v/5)
of smallest discriminant, namely 5. In fact, all these authors neglected to consider

another cubic of small discriminant:
22—22—-1

which generates a field with d(K) = —31. In any case, all these polynomials have
negative discriminant, a property not shared by the quadratic number field Q(+/5),
which suggests that the analogy mentioned above is inappropriate.

Now, the smallest possible positive discriminant of a cubic number field is 49,
corresponding to the cyclic cubic field Q(0) of z* + z2 — 2z — 1, which has the
nicely symmetric roots {68; = 2cos(27t/7),0, = 2cos(4m/7),03 = 2cos(67/7)}.
(Note that 2cos(2m/5) = (v/5 — 1)/2, a very suggestive analogy!) It has also
been shown by Szekeres [Szekeres, 1970; Szekeres, 1984; Szekeres, 1985; Szekeres,
1986] that this cubic number field plays a fundamental (though still incompletely
understood) réle in two-dimensional simultaneous rational approximant theory. On
this basis, [ decided to investigate further this case.

The first way to use the field Q(0) (I will not consider best rational approxi-

mants yet) is to generate rational approximants by

aqn+1) = q(n)+2p2(n) —pi(n) (5.5)
pi(n+1) = pz(n)
po(n+1) = q(n)

(with, for example, p;(1) =0, p2(1) =1, q(1) =2 forn =1,2,3,...) and to use
the ratios (p;(n),p2(n))/q(n) as rotation vectors in a map such as (5.2). These
ratios converge to 1/03 and 1/03 respectively, where 03 ~ —1.8019 is the dominant
eigenvalue of the characteristic polynomial of equation (5.5).

When I did this, computing the eigenvalues of the two-step scaling matrix at
each stage, I obtained the results shown in Table 5.1. [ regard this as strong
evidence for scaling, since the eigenvalue A ~ —1.445 ~ 03/0; is present at all
stages. If I am correct, this is the first reported evidence for critical scaling in
two-torus maps.

For the second way to use the field Q(6), I wish to consider best simultaneous

rational approximants to {¢d1, &2}, with ¢y, ¢s irrational. Of course, the recurrences
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P1 P2 q Qy Q, M Ay
75 136 244 | 0.33788994797 | 0.52471713785 | —5.41338 | —1.40636
136 244 441 | 0.33842876238 | 0.52104500234 1.31505 | —1.44095
244 441 793 | 0.33817843567 | 0.52349504966 0.28819 | —1.45572
441 793 | 1431 | 0.33836421868 | 0.52180021616 8.92446 | —1.45301
793 | 1431 | 2576 | 0.33828561771 | 0.52294553760 0.26780 | —1.45083
1431 | 2576 | 4645 | 0.33833719455 | 0.52215412112 | —17.5783 | —1.44425
2576 | 4645 | 8366 | 0.33829703996 | 0.52270526485 0.64748 | —1.44369
4645 | 8366 | 15080 | 0.33832234497 | 0.52232670069 1.84701 | —1.44709
8366 | 15080 | 27167 | 0.33830410806 | 0.52258993951 3.58308 | —1.44319

Table 5.1: Evidence for scaling in the Hu-Mao torus map

used so far do not produce best approximants. I consider only pairs in the field of

z% +22 — 2z — 1. I consider three separate choices of ¢y, ds:

2. (bl = —92 ~ 0445, (bg =—1— 93

3. ¢1:91—1> ¢2=—92

Now consider three corresponding systems of linear recurrence relations with peri-

odic coeflicients:

dr(k—1)+71r(k—2)—7r(k—3) if k=0 mod3
(k) =% 1(k—1)+7(k—2) fk=1mod3 pk=3,4,5,...
dr(k—1) +r(k —4) if k=2 mod 3
2.
r1"(k—1)—{—1"(k—2)—1"(k—3) if k =0 mod 6 )
r(k—2) +7(k—3) if k=1 mod 6
2r(k — 1 k—2)—rk—3) ifk=2 d6
rig = ZT U ATlke=2) == 3) e bk=6,78,...
rk—1)+7rk—2)+1r(k—3) ifk=3mod6
2r(k—1) + r(k — 3) if k=4 mod 6
Lr(k—1)+r(k—3) if k=5 mod 6 )
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+2r(k —2) + r(k —3)
+1(k—3)
3r(k—1) +r(k—3)

\

ifk=0mod5 ]

ifk=1mod5
ifk=2mod5 pk=5,6,7,...
if k=3 mod5

ifk=4mod5 |

In each of the three cases, consider three parallel sequences p; (k), p2(k), q(k) which

each satisfy the respective recurrence relation with respective initial values:

L. p:(0) =0,p:1(1) = 0,p1(2) =1,

p?(o) = 0)p2(1) = 1>P2(2) = 3a

q(0) =1,q(1) =1,q(2) =4
2 pl(l) = ,p1(2) = 2)p1(3) = 3)p1(4) = 7)

p2(1) 0)p2(2) = 1,]32(3) = 2)]92(4) = 4)

q(1) =1,4(2) =2,q9(3) =4,q(4) =9,q(5) =11
3. p1(1) = 0,p1(2) = 1,p1(3) = 1,p1(4) =3,

P2(1) = 0,p2(2) = 1,p2(3) = 2,p2(4) =6,

q(1) =1,d(2) =3,4q(3) =4,q(4) =13

In each case, the sequence of rational pairs (p:(k)/q(k),p2(k)/q(k)), are precisely

the sequence of best rational approximants, as far as

1: p1(27) = 120860119535, p2(27) = 392430343033, q(27) = 489352633642,

2: p1(52) = 217782410144, po(52) = 120860119535, q(52) = 271570223498,

3: p1(45) = 120860119535, po(45) = 217782410144, q(45) = 489352633642.

Furthermore, these recurrences are unique subject to the requirement that only the

previous three approximants are used if possible, and if this is not possible (in case

1 only), the coefficient of r(k — 4) be unity. I have confirmed this claim by explicit

numerical computation of the best rational approximants up to about g = 10'%, in

all three cases. When the rational approximant generated by my recurrences fails

to be best, it is only marginally so, and I believe they continue to generate good

approximants, and probably some of the best, after the critical k. I believe that

these observations are new.
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I speculate that the reason for this behaviour is the fact that the cubic z* —
20z? — 9z — 1 generates a field isomorphic to that of z3 +z? — 2z — 1, but has one
root about 20.44, and the other two roots of modulus less than 0.23. Thus, the
asymptotics of the recurrence is rapidly dominated by the largest root. This is

supported by the following observation: for case 2, I find that for k =9,10,11,...:

pi(k—6) pa(k—6) q(k—6) (7 49

pi(k—7) Pa(k—7) alk—7) 425 |=

pi(k—8) pa(k—8) q(k—8) |9 5 11
pi(k)  pa(k) (k)
pi(k—1) po(k—1) q(k—1)
_pl(k_2) pa(k—2) q(k—2)

The characteristic polynomial of the constant symmetric matrix C in the above
equation is z® — 20z2 — 9z — 1, and the eigenvalues of C are A; ~ 20.4426, Ay ~
—0.229521, A3 & —0.213128. The growth rates of the denominators are defined by

g = liminf q(j)'/,
j—o0

and are a measure of ‘irrationality’ of the pair. Figure 5.1 gives an example of
the approach of q(j)'/ to its limit in case 1. The other two cases are similar. My

numerical estimates of the respective lim infs are:

1. g =273
2. g=1.65
3. g =1.83,

whereas from the largest eigenvalue of the matrix C: (|A;|Y/ period)

1. g = 2.734297237
2. g = 1.653571056

3. g = 1.828552501.

Unfortunately, these recurrences generate approximants with a rapid growth of
denominators, and I was unable to overcome the numerical difficulties of finding

orbits of two-dimensional maps with the resulting large values of q in order to test
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for scaling. However, [ believe that there is potential for further investigation of
these ideas.

I also considered using these results to generalize the Manton-Nauenberg scaling
(4.4) to maps of C?. For this, we need to first generalize the Siegel linearization

theorem.

5.3 The two-dimensional Siegel linearization the-

orem

Forneess ([Forneess, 1996], page 20, Theorem 4.6) shows the following theorem for
P"=complex projective n-space (which for our purpose may be identified with C?

plus a point at infinity):

Theorem 2 Let f : P* — P™ be a holomorphic map of degree at least two and
suppose that Q is a Siegel domain. Then the boundary of Q is contained in
Uj>0f<j>(C).

Here C is the critical set, that is, the set of points where the Jacobian of f is
singular.

The relevant generalization of Siegel’s linearization theorem has been given by
Zehnder [Zehnder, 1977]:

Theorem 3 Let z — f(z) = Az+f(z) be a holomorphic map in a neighbourhood of
zero in C™, f contains only terms of order > 2. Assume A = diag(Aq,... ,An) to

be diagonal, the eigenvalues A, 1 < k < n satisfying [the diophantine conditions]
N — Al > Colj|™

for all integer vectors j = (ji,...,jn),J = 0 with [jl = > 1_,jx > 1. Cy and v are
two positive constants, and N stands for N*A)? ... Nr.
Then there is a (unique) holomorphic map z =u(C) = z+1({) in a neighbour-

hood of zero, {L containing terms of order > 2 only, such that
f(u(C)) = u(AQ).

Thus, we may consider the case n = 2 and maps such as

Z1 s f Z1 _ Az + O(2)
2 ) | hzm+0(2)
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where O(2) represents terms quadratic and higher in z;, zy, and [A;| =X/ = 1. We
then know that if the As satisfy the diophantine conditions, the Schroder equation
f(u(C)) = w(AL) has a solution. We also know that the boundary of the Siegel
domain is contained in the closure of the forward orbit of the critical set.

I believe that my best-approximation recurrences could be used in this context
to look for scaling, but it is not clear to me how to analyse the orbits, and at
the time of writing I have no definite results. However, [ believe that there is

considerable potential for future research here.

5.4 A torus map based on Jacobi’s sn

Finally in this chapter, I discuss the ‘Mandelbrot’ set and Julia sets arising from
the iteration of a map of the two-torus defined in terms of Jacobi’s elliptic function
sn. The idea here is to see if the requirement of complex analyticity produces any
results different to the R2-analytic case considered in the previous section.

I consider the torus map defined by the complex analytic family fq(z) = Q+z—
sn(yz, m)/y. Here snis Jacobi’s elliptic function, which is doubly periodic and has
two poles in each period rectangle [Abramowitz and Stegun, 1965]. Q is a complex
parameter, and m and -y are real constants. With the choices m = (3 —2v/2)? and
v = 4K(m), where K is the complete elliptic integral of the first kind [Abramowitz
and Stegun, 1965|, we have the relation fo(z+ k +1il) = fq(z) + k + il for integer
k,1 and for all z, Q. Thus this is a natural generalization of the sine circle map
family. Note also that fy is real whenever z and Q are real. Thus this family
can be considered as a complex perturbation of the real sine map, as a nonzero
imaginary part is introduced to Q. If we desire such a complex analytic extension,
an unavoidable consequence is the presence of poles, in this case at 1/2 and (1+1)/2

in each unit square (which is the period rectangle of sn in the complex plane).

5.4.1 Numerical results

The function sn can be easily computed with the standard arithmetic-geometric
mean iteration [Borwein and Borwein, 1986]. My first study was of the parameter
space of the family fq. Due to the symmetries of the function (f; (0) = 1—fq(0)
and fi o(0) =1—fq(0)), it is sufficient to study the region 0 < RQ,JQ < 1/2.
For a large number of values of () in this region, I computed the orbit of zero
under the map fq, that is, the sequence {0,fq(0), fa(fa(0)) = 5% (0),...}. If



82 CHAPTER 5. SCALING IN TORUS MAPS

convergence to a quasiperiodic orbit was detected (that is, convergence to a point
zq satisfying f5% (z9) = z9 + k + il for some integers q,k, 1), then the point Q
was coloured black. The result is shown in Figure 5.2. This can be considered the
Mandelbrot set for the family fo. The ‘ears’ are actually connected to the main
regions; the gaps are an artifact of the algorithm used. The following pseudocode

outlines the method I used:

compute m and gamma
for j from 0 to 1000 do
for k from 0 to 1000 do
omega:=(j+ik) /2000
z:=0
for n from 1 to 1000 do # preiterate
z:=omega+z-sn(gamma*z,m) /gamma
endfor
z0:=z
for n from 1 to 20 do
z:=omega+z-sn(gamma*z,m) /gamma
if both Re(z-z0) and Im(z-z0) are within 1.0e-6 of integers
then color pixel (j,k) black
endfor
endfor

endfor

Note that each individual component is topologically just a Mandelbrot set for
the cubic family z? + ¢. This can be understood from the fact that the family fo
has a cubic critical point at the origin. Each such component has constant ‘period’
g, and varying k and 1, depending on the bifurcation path followed from the central

region. That is, each complete component, including ‘ears’, has constant q.

5.4.2 Scaling

Since one of my aims was to look for possible scaling laws in the family fq, I will
first briefly recall the standard results for the sine family (see Chapter 4) Consider
the sequence of rationals {p;/pi+1} ={1/1,1/2,2/3,3/5,...}, so that p; is the ith
Fibonacci number, and the limit of the sequence is the golden mean (v/5 — 1)/2.
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Field of 28 + 22 — 2z — 1, case 1
2.8 I I | | | | |

2.7 | e
26 F i

2.5 -

23 n

91 L ! ! ! ! ! ! ! ! !
0 50 100 150 200 250 300 350 400 450 500
J

Figure 5.1: The approach of q(j)*/7 to its limit

n 0.05 (o] 013 0.2 Q.25 2.3 .35 .4 .45

Figure 5.2: The mandelset of fa(z) = Q +z — sn(yz, m)/y
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<Pit1>

For each 1i, let (); be the smallest positive value of Q such that . (0) = p;.
Then the map fg, has winding number p;/pi+1. In other words, the point zero is
just shifted by p; units under p;,; iterations of the map; or, modulo the integer
lattice, it is a fixed point of f<Pi+1~. Then it is found that lim;_,o, Q;/Q;, exists
and takes the value & ~ —2.833 (see Chapter 4). I now consider the complex sn
case, and of course the winding number, similarly defined, becomes complex.

First of all, within each connected black region of Figure 5.2, we have the well-
understood scaling behaviour of complex cubics described in § 3.1. For example, the
largest region, centered on the origin, has winding number (04 0i)/1, and moving
up the imaginary axis we have a bifurcation to a winding number (0 + 0i)/2.

The other regions are (in decreasing order of size) (0 + 0i)/3, (0 + 01)/4, etc.
Secondly, starting at O = 1/2, we have regions of winding number (1 + 01)/3,
(1 4+ 0i)/4, (1 4+ 0i)/5 and so on in decreasing order of size along the real axis.
At approximately Q = 1/2 4 0.271, the region has winding number (1 +1)/4. To
produce an analog of the Fibonacci scaling law for the real sine map, we would need
to consider one of the two-dimensional simultaneous approximation algorithms
discussed in § 5.2. Then we would need to locate regions corresponding to a
sequence of approximants with rational real and imaginary parts. However, [ found
the numerical problem of finding the appropriate parameter values too difficult, and

at this stage, [ have no scaling results for this type of map.

5.4.3 Julia sets

By fixing the parameter (), one may study the orbits of the map fg as a function
of the initial point of the orbit. Figure 5.3 was computed by colouring black all
those initial points for which the orbit under f, does not exceed a modulus of 103
in 5000 iterations. It can be considered the filled Julia set of fj, although other
definitions [Bergweiler, 1993|, perhaps more appropriate for maps such as these,

have been proposed.
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Figure 5.3: The Julia set of fy(z) =z — sn(yz, m)/y
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Chapter 6

Quaternion maps

Adriano de Armado: ‘Is that one of the four complexions?’

Love’s Labour’s Lost, act 1, scene 2

6.1 Introduction

Complex analytic dynamical systems are well understood [Devaney, 1989; Milnor,
1990], and the corresponding Mandelbrot and Julia sets have created much interest
[Peitgen and Richter, 1986]. It is therefore natural to ask if these concepts have an
analog in higher dimensions. Indeed [Norton, 1982] and [Pickover, 1990] have drawn
what they claim are the quaternion analogs of the complex Mandelbrot and Julia
sets. However, as [ will make clear, these authors considered a very restricted class
of maps, apparently without realizing that their maps were essentially equivalent
to complex maps. In this chapter I will introduce a general theory of quaternion
iteration.

In particular, I wish to examine the question whether there exist any generic
structures playing a central role, analogous to the ordinary Mandelbrot set in the
complex case, and thus whether there is a Feigenbaum scaling theory, distinct from
that described in the earlier chapters of this thesis.

Although some aspects of quaternion iteration theory have been discussed [Hol-
brook, 1987; Kozak and Petek, 1992; Petek, 1992; Heidrich, 1994; Bedding and
Briggs, 19964|, there is no systematic description in the literature. I therefore de-
cided to present here a fairly full exposition of the background and the results I

obtained.
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Quaternions are an extension of the idea of complex numbers to four dimen-
sions, and I begin by discussing the iteration of linear and quadratic functions of
the quaternions, and examine the réle played by regularity (the analog of complex
analyticity) in this context. In contrast to the complex case, regularity is not auto-
matically preserved by composition of quaternion functions. I find that demanding
preservation of regularity is in fact too restrictive, yielding very little new beyond
the complex case. Finally, the quaternion generalization of the Mandelbrot set is
described.

6.2 Quaternions

I denote Hamilton’s quaternions by H, that is, the set {qo + qi1+ g2 + g3k, gm €
R} with i2 = j2 = k? = ijk = —1. H is an associative, but non-commutative,
division algebra. Each subspace of real dimension two (for example, the 1-i plane)
is isomorphic to C. For an excellent treatment of the algebraic properties of H, see
[Koecher and Remmert, 1990].

The subset of pure quaternions (those with zero real part) is denoted Pu(H).
The pure part of q is the 3-vector corresponding to the i, j and k components, and
is denoted Pu(q). The conjugation operation q — q negates the pure part of q.
If a € H is a unit quaternion (that is, aa = 1), then aqa is a rotation of the pure

part of q. As an explicit example, if ¢ = cos(\/2) and s = sin(1{/2), then

(c +si)q(c —si) = qo + g1i+ (g2 cos b — gz sin)j + (g2 sin + qz cos k.

This is a rotation through an angle 1\ about the i axis. Clearly the choice P =
arctan(—qs/qgs2) annihilates the k component of the result. In fact, for any q € H
we can always find an a such that aqa is purely complex. I will write ¢.(q) = aqa,

and ¢S !> for the inverse of this operator.

6.3 Quadratic quaternion maps
Consider the map f.(q) = ¢ + g%. Then
b3 ofcodbalq) =daca+q?

so that for each ¢, an a can be found so that aca is purely complex. Then the

orbit with seed zero will be purely complex, and the parameter dependence of
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the dynamics will be described by the ordinary mandelset M(c + z2,0). This is
the set of ¢ values such that the orbit of the origin is bounded under the map
z + ¢ + z2. In other words, the quaternion quadratic map, when restricted to the
orbit of zero, is conjugate to a complex quadratic map (that is, equivalent under
an invertible change of variables). The value of a required to achieve this will be
an R*-analytic function of c. This means that if we define the quandelset to be
the set of ¢ values such that the orbit of zero is bounded under ¢ + g2, then locally
(for example, in some neighbourhood of an n-furcation point) the quandelset is
obtained from the mandelset by a rotation, smoothly dependent on the parameter
c. In particular, the slices in the 1-i,1-j and 1-k planes are exactly the same as
the ordinary complex mandelset. Furthermore, for each c, the entire orbit of the
origin lies in the subspace of H containing 0,c and c2.

Next I investigate the stability of the quaternion n-cycles. The stability is

determined by the eigenvalues of the product of Jacobian matrices:

Je (0)]¢. (Fe(0)) - - Js (F5771(0)).

Now for f.(q) = ¢ + q?, with ¢ € C, we have

[qo —q; 0 0]

g qo 0 O
Je.(q) =2 ,
f 0 0 qo 0

0 0 0 qo

so that the eigenvalues of J¢ (q) are 2q¢ and 2(qo £ iq;). Because of the block
structure of J¢_(q), these eigenvalues are multiplicative along an orbit, and we have
exact equivalence to the complex case where the eigenvalue of J¢(z) = f'(z) = 2z
is 2z. The additional eigenvalue of 2q, does not affect the stability, because its
modulus is always less than or equal to 2|(qo £ iq1)|.

Now the ordinary complex mandelset contains hyperbolic components on which
the map has a stable cycle of constant period. These hyperbolic components are
each conformal to the unit disk, and meet tangentially at n-furcation points. In the
quandelset, these components are now bounded by surfaces, the topology of which
depends on whether the original hyperbolic component intersects the real axis. For
example, the period-one region becomes a topological three-sphere. Because of the
uniqueness of the rotation ¢, these components never intersect. For example, the
two period-three components attached to the main cardioid of the mandelset are

joined in the quandelset by ‘tubes’ in the two additional dimensions. Also, the
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self-similar features, quantified by the scaling constants known as feigenvalues are
just the usual complex ones described in § 3.1, since these are invariant under an
analytic re-parameterization.

Note that this entire argument also works for the maps 1 + cq?,1 + qcq etc.
One might ask why a similar argument cannot be used to reduce the complex case
to the real case. The answer is that a rotation in complex space is of the form

¢a(z) = az, where |a| = 1. Thus if f.(z) = ¢ + z?, then
G ofcoda(z) =a e+ az’.

We could therefore make a'c real, but the factor a remains in front of z?, and the
orbit of zero does not remain real. It is the lack of commutativity that makes the
argument work in the quaternion case, whereas in the complex case the rotation
commutes with the dynamics.

This completes my discussion of the map ¢ + 2. I conclude that there is no
new interesting dynamics in this map. Now, this map does not share with its
complex analog the property of analyticity, a property known to be crucial for
the existence of mandelsets with the topology described above. Note that if we
allow any quaternion coefficients in the quadratic map, we can in fact produce an
arbitrary quadratic map of R* [Sudbery, 1979]. Thus some restrictions are required
if we are to produce any properties characteristic of quaternions. Clearly the map
¢ + q? does not play any fundamental réle analogous to that of the map ¢ + z?
in the complex case. Indeed, even in the non-analytic complex case, more general
maps (depending on Z as well as z) can exhibit other types of bifurcations than
the period n-tupling observed in the mandelset. In the next section I will consider

quaternion analogs of the concept of analyticity.

6.4 Regular and regularly iterable maps

The property corresponding to complex analyticity for quaternion (or, more gener-
ally, Clifford algebra) functions is known as regularity or monogenicity, and is a re-
quirement that the function satisfy a generalized Cauchy-Riemann equation. This
concept originated with Fueter! in the 1930s [Fueter, 1932; Fueter, 1934; Fueter,

!Since Fueter is little known, I add the following information from [Bieberbach, 1931]: Rudolf
F. Fueter was born in Basel in 1880, studied in Gottingen and Marburg, and was professor in

Basel, Karlsruhe and in Ziirich from 1917, where he did his work on quaternions.
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1935/6; Fueter, 1937a; Fueter, 1937b; Fueter, 1938] and has recently been investi-
gated further [Sudbery, 1979; Brackx, Delanghe and Sommen, 1983; Gilbert and
Murray, 1991].

Following these authors, I define the left Cauchy-Riemann-Fueter operator by

~ 0 0 0 0
0=20,= +i +3j +k ,
i 0do 0dq JaQ2 0q3

so that the condition for f to be left-regular at q is

of(q) = 0. (6.1)

A similar definition may be made for right-regularity.

The above definition proves very useful in the study of quaternion integral
theorems and generalization of Cauchy’s theorem, but suffers from the drawback
that the common functions of interest, such as polynomials and even the identity
function itself, are not left-regular or right-regular functions.

For this reason, [ mention an alternative definition due to Rinehart [Rinehart,
1960| and Cullen [Cullen, 1965|. We define the Cullen differential operator by

1/ 0 Pu(q) o
ac—ﬁ(a—qﬁ v a>’

where 12 = g% + g5 + g3. A function f : q » f(q) can now be defined as Cullen-

regular at q if it satisfies
acf(q) = 0.

The variable r is a radial distance on a two-sphere in the pure part of H and
Pu(q)/r is then a Cullen-regular unit radial vector. Oc is a generalization of the
usual complex differential operator 0/0z. If we restrict q to any of the planes
in which some pair of qi, qq, qs; vanishes, then d¢,dc are precisely the complex
differential operators in that plane; thus it should not be surprising that, as in
the complex case, the Cullen definition of regularity includes all (real coefficient)
polynomial functions of q as regular functions. This result is easy to see when it

is realized that such polynomials always take the form

u(q).

p(q) = f(do,7) + g(doy )~

Since Pu(q)/r commutes with Oc, the regularity follows by recognizing that the
situation is identical to the case of Cauchy-Riemann equations for a complex poly-

nomial.
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As well as polynomial functions, Cullen-regular functions include rational func-
tions with real coefficients, and all of the elementary transcendental functions (de-
fined by their usual Taylor expansions) such as the exponential, logarithmic, and
trigonometric functions. With the above definitions, the usual procedures for real

or complex differentiation carry through, so that we have

ocq = 0

Ocq = 1
dc(gq™) = 0
dc(q™) = nq™!
oc(f(q)) = 0.

[ will make no further use of the concept of Cullen-regularity, since when applied
to iterates of a map it produces only a situation equivalent to complex analyticity.
Thus use of the unqualified term ‘regular’ will henceforth refer to the definition of
left-regularity in equation (6.1).

Although the concept of regularity is standard, the idea of regular iterability
has not been considered before. By regularly iterable, I mean that all iterates
f<1> <2> {<3> ... are regular. This (rather strong) restriction will need detailed

investigation. I begin with regularly iterable linear maps.

6.5 Regularly iterable linear maps

I first consider the left-H-linear map f(q) = qa, where a is a constant quaternion.
We have f’(q) = —4a. Considered as a map on R*, the eigenvalues are R(a) £
i/Pu(a)|. So the origin is stable if [f'(0)|*> < 4, or 4|a] < 1. Note, however, that
0f(q) = —2a is zero iff a = 0. Thus, if we wish to consider non-trivial regular
linear functions, we must drop the H-linearity condition, and instead impose the

requirement of real-homogeneity.

The most general left-regular map which is real-homogeneous of degree one is

f(q) = (ig + qi)a+ (jq + qj)b + (kq + gk]c,



6.5. REGULARLY ITERABLE LINEAR MAPS 93

where a, b, c are constant quaternions. Represented as a map on R*, this is

a; + b2 —+ C3 QAo bo Co do

—bs+co—aqy a; by ¢

f(q) = —2 3 2 0 1 1 C1 d: ’ (6.2)
—C1+a3—by az by ¢ qo
—as+b;—cy az bz c3 ds

where a = ap + a;i + asj + azk (a, real) etc. A sufficient condition for <> to
be regular is that b and ¢ are both real multiples of a. To see this, we make the

substitution b = xa, ¢ = ya, (x,y € R) in equation (6.2) obtaining

f(a) = Aq (6.3)
with f and q now regarded as column vectors and

a; +xaz +yas ap Xap Yag
A 9 —Xd3z+yas —ap a; Xa; ya
—yda; +dz —Xay dg XAy Ydas

—az +Xxa; —yap asz xas yas

A detailed study of the iteration properties of maps of the type (6.3) will be now
be undertaken. Because of the complexity of the calculations, I first summarize the
results to be obtained: it will be shown that if the maps (6.3) are expressed in an
appropriate basis, they are again conjugate to linear maps in the complex plane.
As such, they lose much of their interest from a quaternion point of view. However,
maps of type (6.3) are not the only regularly iterable linear maps. An example
of a slightly different kind has been given, for example, in [Heidrich, 1994]. It is
possible to write down a necessary and sufficient set of simultaneous multinomial
equations for the components of the quaternions a, b, ¢ to yield a regularly iterable
map. Included in these equations is the condition that the determinant of the
matrix A should be zero. In solving these equations, I have recovered the case
(6.3) above as well as the solution mentioned in [Heidrich, 1994] and a multiplicity
of other cases. Investigation of the eigenvalues of A for these many cases reveals
that most reduce to complex maps in a two-dimensional subspace of H. There are
a few exceptional cases. In general, these cases must project an initial value of g
into at most a three-dimensional subspace of H (because of the zero determinant).
Of those investigated so far, none exhibits very interesting iteration behaviour. An
example of the kind of behaviour found is one where the iterates move along a

circular helix converging to the origin or diverging to infinity.
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I now proceed to completely classify regularly iterable linear maps. While it is
of greater interest to study quadratic and higher degree maps, [ consider it essential
to first understand what happens in the linear case. Analogous investigations have
been undertaken in [Heidrich, 1994] for the far simpler case of the space R®. For
this space, it was concluded in [Heidrich, 1994| that regular iterability constrains
all linear maps to be equivalent to purely complex maps. It has been speculated
[Heidrich, 1994, that a similar state of affairs probably exists in the full quaternion

case. I show here that these speculations are almost, but not entirely, correct.

The demand that iteration preserve regularity is now just o0(f<"~(q)) = 0 for
all iterates m, which may be viewed as a constraint on the matrix A given above,
so that 0(A™q) = 0. To progress further, we need to examine properties of powers

of the matrix A.

For a 4x4 matrix, the Cayley-Hamilton theorem implies that

A* = 0 A3 + aA? + aA + ayly,

where I, is the 4x4 unit matrix and the coefficients «; are functions of the various
trace invariants of A. In particular, 0y = — det(A). Higher powers of A than the
fourth may be similarly expressed in terms of the four lowest non-negative integer

powers, by repeated use of the Cayley-Hamilton formula.

Let us now assume that a regular linear function f(q) is known also to have reg-
ular second and third iterates. Then for this function, we have 9(Aq) = 9(A%q) =
0(A3q) = 0. Applying 0 to A* and higher powers of A acting on g, then re-
placing these powers by their expressions in terms of lower powers on the right of
the Cayley-Hamilton expressions shows us that regularity of all higher powers is
achieved solely by demanding the vanishing of det(A). This is true because the
three non-zero lower powers give regular maps, while 0(det(A)l,q) = —2 det(A).
The task is therefore reduced to that of finding all A for which the first three pow-
ers of A are regular maps, and the determinant of A is zero. This problem involves
a significant amount of complicated algebra, for which the assistance of the com-
mercial computer algebra program Maple was invoked. The next task is therefore
to formulate the problem in a manner which is convenient for programming with

Maple.

Let M be any 4x4 matrix with components my; acting on g regarded as a
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vector in R* and consider the result of acting on Mq with the derivative 9:

[ Mpp — M1 — Moo — M33 -|
My + Mp1 + M3g — Mog
0(Mq) =

Myg + My + M3 — Mgy

Mgo + Mp3g + Mo — M2

The general solution of 0(Mq) = 0 is precisely M = A as expected; however, we
see that the special structure of A has been determined by four equations. In order
to force the second and third iterates of f to be regular, we just need to rewrite
the four equations substituting components of A2 and A3 for those of M, then
impose the condition det(A) = 0 to establish regular iterability. Given an already
regular A, we have to solve nine multinomial equations for the twelve unknown
real quantities appearing in A. I now proceed to write these equations in a manner
suitable for input to Maple.

[ first define four matrices n; by

1 0
o <
e I R R
00 0 -1
[0 1 0
1o 0
=g 1
00 -1 0|
[0 01 0 ]
oo -1
=y 00 0
010 0 |
[0 0 0 1]
o 10
BTl 100
|1 0 00

The nine conditions for regular iterability of A may now be written as

Tr(A%n;) = Tr(A%n;) = det(A) =0, 1=0,1,2,3.
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Before attempting to solve the above equations, I will study transformations that
preserve regularity. An understanding of this topic will turn out be indispensable
in finding the most general solution sets. Sudbery [Sudbery, 1979] shows that the
general conformal (that is, Mdbius or angle-preserving) transformation does not
preserve the regularity of a regular quaternion function. However, given a regular
function f, the special combination

1 (ya+8)
B — oy=182 [yq+ 62

Flq) = f(v(a))

is regular, where v(q) = (xq+B)(yq+8) ! and «, 3,7, d are constant quaternions.

Since we are only interested in linear maps, we set v = 3 = 0. Sudbery
[Sudbery, 1979] then shows in his proposition 5(ii) that this special case preserves
regularity. In other words, if f is regular, then so is 6 'f(xqd!). (The constant
real factors do not affect regularity.) Since we only care about left-regularity, we
may also append any constant quaternion to the right hand side. I choose to
multiply by o« on the right. We now have a transformed regular linear map of the

L we are left with F(q) = xAxq

form F(q) = 6 'Aaqd 'a. Choosing § = & = o~
which is an orthogonal transformation on Pu(H) [Koecher and Remmert, 1990].
From a purely practical point of view, however, [ will later wish to regard the
transformation as a symmetry of A, maintaining the regular iterability of the linear
map Aq. In summary, if A is a regularly iterable linear map, then so also is

MAM ! where M is as given on page 219 of [Koecher and Remmert, 1990] as

¢ 0 0 0
M:l 0 K?+A%—p2—~2 2(Ap — kv) 2(kp + Av)
bl o0 2(kv + Ap) K2 — A2 4 p? —v? 2(uwv — KA)
0 2(Av — k) 2(kA + wv) K2 — A2 — 2 ++2

with ¢ = k? + A2 + p? ++2.

M is a matrix representation of a general element of an SO(3) subgroup of
the group SO(1,3). It is clear why M leaves regular iterability intact when one
examines its effect on the matrices 1,1n,M2,n3. We find MnM ™! =1 and further,
M1,MN2,M3 form a triplet under the group rotation (that is,

3
MM =) aym;,
=1

for some real ay;). Since matrices can be cycled in a trace without altering its value,

it is easy to demonstrate that the 13 defining conditions for regular iterability are
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invariant under rotation of A with M. Later, I will use M to make a convenient
choice for some components of A, thereby facilitating the solution of some of the

trace equations.

6.5.1 Regularity of the second iterate

Every solution which follows could, in principle, give rise to other solutions by

interchanging a,b and c. These alternative solutions are to be regarded as not

new and so will be ignored. In terms of components of A, the four equations
0(A%q) = 0 become

aiby + ajcs + bacg — braz —ciaz —coby =

—bsa; +coa; + biag —cia; =

b102 — Clbg + a3b2 — (12b3 =

o o o o

—C1b3 + CoQ3 — AsC3 + b1C3 =

As has already been noted one possible solution set for these equations is obtained
by observation to be {b = xa,c = ya}, with x,y € R and a = (a;, ay, az) etc.
This set will be referred to as M.

When asked to find all solution sets, Maple produces 52 sets; however, many of
these are special cases of the one above, while others contain non-real expressions
for one or more of the components of a, b, ¢ (which can be rejected). After careful
examination of the solution sets, it is possible to determine that there is only one
further independent set beyond that already given. I name this alternative set .

It takes the following form:
az = b1, a3 = ¢4, by = cg, a1 = (b + ¢} +c5 — bacs)/(ba +c3)

with all other components independent at this stage. The sets M and N now
constitute a complete solution to the problem of finding all twice regularly iterable
linear quaternion maps. The solution sets M and N have been constructed to
satisfy four of the nine desired constraints (though by coincidence, set M also
results in a zero determinant for A). These sets must now be constrained further

in order to satisfy regularity of the third and higher iterates.

6.5.2 Regularity of the third and higher iterates

Previously, it was noted that if the solution set M is supplemented with the further

conditions {by = xag, co = yag} the result is a fully regularly iterable map. It was
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further shown that the resulting map is always equivalent to a complex linear
map in some complex subspace of the quaternions, and thereby loses its interest
in a quaternion context. Heidrich [Heidrich, 1994] has pointed out the existence
of another form of regularly iterable linear map not of the kind discussed here.
However, this new map also turns out to be equivalent to a complex map. These
results led to the speculation that only complex-equivalent maps would be found.
[ now attempt to verify this speculation by finding all solution sets for all of the

necessary constraints.

6.5.3 Solution set M

Since matrices A of the type M already have zero determinant, Maple was in-
structed to substitute solution set M only into the four expressions for Tr(A3n;),
(denoted henceforth by t;) and simplify. The results are as follows:
ty = —ap’yas — ag’xay + bpasag — coara; — boyai® + boaz’y —
bo?yas — Coas®x + coxa; 2 — co?xay + byasa; + coazag —
bo’a; — co’a; — agx’azas — apxaz’y + agyas’xagy’asas —
boya;xay — boy?ayas + beasxay — coasyas + cox’ajay +
Coxa1yas — Apxaza; + apYyasa; + apxa;bg + coxazby +

apyaico + boyascy

2. 2 2 2
t, = CL1b0(12 + agy“ag” + a;cpas + ap“xas — ap“yas + agCoQg +
2. 2
apx“as” — qpbgas — apa;xas — qpa;yas — 2agxasyas + agboya; —
QpCoxaq + agboya;), + QoCoxas — xa12b0 — y(l12C() — b()XCl32 —

2 2 2 22
Coyaz” +y“a;"ap +x"a;"ap

2 2 2.2 2
t, = b() ya; + b()C()ClQ — Qpasz“x + b()y a;” — b() as — b()alXClQ —
2
2b0 ajyas — boXCLzy as + b()Cl()XCLg — b() dpoyas — boCoXCll +x“aiapas +
2 2 2 2 2
Xa;apydas + xa;Coasz + x a2Ceas + boaz” +y“as by — ax“apx —

2 2 2
Coyao“Xx —ya;“cox + boas

t3 = —C02X(11 — C()b()(lg — (l()yCL32 + 002(12 — 2C0(11X(12 — Cp1yas —
2
CoXagyas + CoapXxas — CoQpyas + coboya; +yajapxas +y“a;apas +
2 2 2 2 2 2
ya1b0a2 +vy a2b0a3 +x"asz“cy — ax”"agy — boxag Y+ cpaz” +

C()C122 + CoX2a12 — xa12b0y.
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It is required to set all the above t; to zero and solve. For the sake of clarity
and efficiency, it was found to be convenient to attempt the calculation in stages.
First Maple was asked to solve t; = t; = 0. Four solution sets were produced. I
name these 7, U, V and W. In each case, all components of a, b, ¢ not mentioned
in the set are to be regarded as independent variables.

T:
{x =bo/ag,y = co/ao}.
This is the solution already referred to in above. For this case, the remaining

constraints tyo = t3 = 0 are already true. The matrix A is

a; +xaz+yas apg Xap Yap
A 9 —Xaz3+yas —ap a; XxXa; ya;
—ya; +az3—Xap dz Xdz Ydp

—az +Xxa; —yap az xds yas

whose eigenvalues take the form (A, A,0,0) for some complex A. An eigenvalue

set of this form indicates that the map is equivalent to a map in some complex

subspace.
U:
. = az(a? + a3 + a2) — az(asby + apar) + co(a? + a?)
a;(a? 4+ a3 + at) ’
y = as(a%+a§+a§)+a2(asco+aoa1)—bo(a%+a§)_

ai(a? + a3 + aj)

This complicated case is a generalization of that found by Heidrich in [Heidrich,
1994]. Heidrich’s example can be recovered from this solution by choosing a; =
a3 = 0 and renaming some of the remaining variables. Although rather compli-
cated, Maple shows quite easily that for this solution set, the quantities tg, t3 are
again automatically zero without further solving required. Calculation of the eigen-
values of A for this case once again reveals the structure of a complex-equivalent
map.

V:

aQa% + al(ag — b())(l() + a2a3b0
ao(aj + a?) '
This solution has b = xa but c is not proportional to a. Unlike the previous sets,

X:bO/QO) Y=

the quantities t;,t; remain to be constrained to zero. I refrain from giving the
expressions for these quantities after substitution of the solution so far, on account
of their great length. However, Maple is still able to cope with solving the final

two constraints and gives five possible solutions in terms of by, ¢y as follows:
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1. by = azaop/ai,co = azap/a;
2. ¢o = (ag?ay + azaga; — a;agbg + azazby)/(ax? + a;?)
3. ¢g=

a;(boa? + bpa + alas) + as(—a?ag + bpaza; — aZay — aZag + asbgay)
2 2
((12 + (11)(10

4. co = al/as, by = —ajap/as

5. Cyp = —(a12 + a22 + a32)/a2, b() = —Cll(l()/(lQ.

All of these solution sets result in a complex eigenvalue pair and two zero eigen-
values, and so only yield complex-equivalent maps.
V4%
x = az/a;, y = az/a;.
Substitution of this solution set into the remaining expressions for t; and t3 leads

to just one remaining equation, since ts is found to disappear immediately. I find
aty =

2[bpas(aiag + coas) + aicoazagl — ag(as + a3) — bi(al + a3) — ci(a? + a3),

and on setting this to zero, we can choose to solve for any of the variables. I choose
ap and find

a1 (boas + coas) £ 1i(asco — asbg)y/a? + a3 + a}

2 2
as; + aj

Qg =

Here it has been assumed that a, and a; are not simultaneously zero and i has
been used for the square root of —1, distinguishing it from the quaternion element
i. The case for which a; = a3 = 0 may be solved as a special case. Furthermore,
since we require all variables in the equations to be real, we now have to make
the demand that ascy — agby = 0. Yet again, after substituting all the necessary
conditions into the matrix A and calculating the eigenvalues, I find only a complex-
conjugate pair and a double zero. The special cases for which one or both of a,, as
are set to zero also yield nothing new.

At this point, I have exhausted the solution set M and found only complex-

equivalent maps. I must now turn to the set N.
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6.5.4 Solution set N/

The alternative solution set, N, is much harder to analyse. In contrast to the
previous solution set, det(A) is not automatically zero for this set; however, Maple
quickly implies that the quantities t{, t; and t3 are already zero. This seems promis-
ing because there are only two conditions left, namely t, = 0 and det(A) = 0. Un-
fortunately these conditions are very complicated and Maple does not give easily
comprehensible output.

The required expressions can be regarded as respectively t;, a third degree
multinomial and det(A) a fourth degree multinomial in the nine variables a,, by,

Co, a1, by, Cc1, by, o and c3. I choose to write both as quadratics in ay:

ty = —ag(bz + 03) + 2a0(b0b1 + Cocl) — 3C3(C% + C% — b%) —
by(cZ + 3c2 — 3c2) — a;(bZ + 3b? — 3bZ — 6bycy + 2 + 3c? — 3c2) +
3a§(b2 + C3) — b%C3 + 2b0COC2 — 3b%b2 — 6b1C1C2

and

det(A) =

aj(bacs — €3) + 2ao(co(bica — baci) — by(bics — cic2)) + af(bacs — c3) +
a;(bjcs — 2bgcoca — bics + 2bicicy + by(bacs + 5 — ¢ — ¢ +¢2) — cics) —
bic? — bi(baycs +¢5 + ¢3) + 2bgbicoes + 2bicica(by + €3) —

bQC%(bQ + c3)

where it is to be understood that the substitution a; = (b?+c2+c2—bsc3)/(ba+c3)
demanded by the regularity of the second iterate is to be made at a convenient
moment.

Clearly one or other of these could be solved for say, ag and the expression for a;
then substituted into the result; however, the remaining constraint then becomes
very difficult to solve as it contains square roots of large expressions. Instead, [ now
return to our study of the symmetry properties of regular iterability, and invoke
these to simplify our equations.

Recall that the most general symmetry which preserves regular iterability of a
linear quaternion map, takes the form of a rotation of the pure part of q. One may
write this as a rotation acting on A in the form MAM ™!, where M is a matrix
representation for a general element of the group SO(1,3). There are various ways

in which M can be used to simplify our equations. In order to avoid having to
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explicitly demonstrate that our choices are valid, I observe that the bottom right
3% 3 block of M is just an SO(3) rotation acting on the bottom right hand 3x3 block
of A. Now since in the case N, the bottom right 3x3 block of A is real symmetric,
it can be diagonalized by appropriate choice of M, with the bottom right 3x3
block of M an orthogonal matrix. This operation is regularity-preserving. [ may
therefore assume that there are zeroes in the positions A3, As2 and Ay 3. Thus we
may permit ourselves to set b; = ¢; = ¢, = 0 everywhere. The disappearance of
these parameters in other positions within A is then guaranteed by the knowledge

that the rotation preserves regular iterability. A now takes the form

——bb22+CC33 + b2 + C3 Qo bo Co
bac,
Y T
—bg 0 by 0
—CO 0 O C3

and the remaining two equations simplify to
(be + c3)%aj — 3bscs + bics + cobs =0
and
bacs [(bs + ¢3)%af — (ba + c3)(bacg + c3bg) + bacs(b3 + bacs + ¢3)] =0,

where it has been assumed that by + c3 # 0, this case having been exhausted by
earlier solutions.

Maple now gives twelve possible solution sets, but these can be collected into
three groups of four, differing within each group only by the signs attached to
square roots or in one case, by permutation of some of the parameters. The fol-

lowing three solution sets therefore represent all possible cases:

{by = ap = by =0},
{coand ay = complicated expressions},

{ap =co =0, by = —c3/2, by = V3c3/2}.

Only one of these sets yields anything new. The first set gives a complex-
equivalent map. The second requires a careful examination of the complicated

expressions. It turns out that they cannot be real simultaneously. The set must



6.6. REGULARLY ITERABLE QUADRATIC MAPS 103

therefore be discarded. Substitution of the last solution set results in

3 0 —v/3 0

Ao |02 00
IV3 0 -1 0
00 0 2

The characteristic polynomial of this matrix is A(A — c3)? so that the eigenvalues
are just cs and zero.

The most general regularly iterable A of this new kind is now obtained by
transforming the above A to MAM ! with a general SO(1,3) matrix M. The result
is rather unwieldy so I refrain from writing the details. Suffice to say that such a
transformation must leave the characteristic equation, and hence the eigenvalues,
invariant.

Although this is the only example [ have found of a non-complex-equivalent
linear map, the dynamics are not interesting. A quick calculation shows that
A? = —c3A so that the map projects any initial q into a particular 3-dimensional
subspace of H, then subsequent applications of f move the point in a straight line
along the ray connecting this first iterate to the origin, converging to zero if |c3| < 1
or diverging to infinity if |c3| > 1. For c3 = 1, f fixes q after the first iterate. This

completes the analysis of regularly iterable linear quaternion maps.

6.6 Regularly iterable quadratic maps

Let us now see whether anything more interesting is possible with regular quadratic

maps. Sudbery [Sudbery, 1979] shows that a basis for such functions is the set of

polynomials
Pii(q) = [Pi(a)]* = (qoi — q1)?
Poa(d) = [Po(q)]* = (doj — d2)?
Ps3(a) = [Ps(q)]* = (qok — q3)?
Pi2(d) = did2 — do(id2 + jdi)
Pis(d) = dids — do(ids + kai)
Pos(d) = d2d3 — do(jds + kqz).

Thus the most general left-regular map which is real-homogeneous of degree 2 is

f(q) = Pui(q)a + P(q)b + Ps3(q)c + Pia(q)d + Pis(q)e + Pas(q)f,



104 CHAPTER 6. QUATERNION MAPS

where a,b,c,d, e, f are constant quaternions. Note that the basis functions P,
involve a projection onto a two real-dimensional subspace. It follows that a function

such as
a+ Pi(q)b+Pii(g)c

where a, b, c are constant quaternions, is left-regularly iterable, since it splits into
independent maps, each conjugate to complex maps &+ Bz +vz? (&, B,7v,z € C),
in each of the planes 1-i and j-k. Of course, the dynamics of all these maps can
be completely understood with the known theory of complex analytic dynamics.
This class of regularly iterable maps may be enlarged by conjugation with Md&bius
transformations ¢(q) = (aq + b)(cq + d) !, which, as shown by [Sudbery, 1979],
preserves regularity. However, the inclusion of terms in Pis, P13, Po3, or the mixing
of terms such as Py; and Pyy destroys regularity even in the second iterate. I con-
clude that the requirement of regular iterability is too strong to allow the existence

of maps other than those conjugate to complex quadratic maps.

6.7 Conclusion

I conclude this chapter by noting that the special properties of iteration of complex
analytic maps have no analog in the quaternions. In particular, no theorem is
known giving a quaternion analog to the well-known theorem that for complex
rational maps each stable cycle attracts at least one critical point [Milnor, 1990].
The powerful results of complex discrete dynamical systems theory depend on the
scalar and commutative nature of the underlying field. Thus, I have found no
evidence that discrete dynamical systems on the quaternions have any interesting
behaviour different from the complex case.

Nevertheless, I have explicitly exhibited all regularly iterable linear maps on
the space H of quaternions. Earlier speculation about the nature of such maps
has been largely substantiated, in that almost all the maps found are equivalent to
linear maps in a complex subspace of H. One unexpected exceptional class of maps
has been found, but the dynamics were seen to be uninteresting. While performing
this study, I have been motivated by the prospect of looking for regularly iterable
nonlinear maps on H, since if such maps exist, they could be expected to have a

linearized form which is also regularly iterable.



Chapter 7
Formal power series algorithms

Antipholus of Syracuse: ‘Iransform me then, and to your power I'll yield’

The Comedy of Errors, act 3, scene 2

Many calculations in this thesis depend crucially on formal power series manipu-
lations. I collect together in this chapter some basic ideas of this topic, and then
describe some new computer algorithms for manipulating formal power series and
solving functional equations. Several of my results depend on these new algorithms.
They were computed with software making use of my own C++ formal power series

package, available at [Briggs, 1996].

7.1 Formal power series

Formal power series are just sequences with elements in a fixed field K. The set
of such formal power series is denoted K[[x]]. I write either a = [ag,a;,...] or
> 2, aixt, where a; € K. The field K will be the rationals in the examples I
present, but it just as well could be complex numbers, quaternions, invertible n
by m matrices, etc. The second notation is a formal device, and does not imply
that x has any value, or that there is any infinite sum. The first element a, of the
sequence is called the constant term. K[[x]] is an integral domain (a ring without
zero divisors). The operations are termwise addition and Cauchy multiplication
(c=ab & ¢ = Zi:o a;bj_i). Units (that is, invertible elements) are formal
power series with nonzero constant term. These are formal power series having

multiplicative inverses. Series composition, denoted a o b, is the substitution of b
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for x in a. The compositional identity formal power series is [0,1] = x. For aob
to be well-defined, we require by = 0, that is, b must be a nonunit. Any nonunit
b has a compositional inverse (or reversion), denoted b<"'>. It of course satisfies
b<">ob=bob<'> =[0,1]. The standard references on formal power series are
[Knuth, 1981], [Henrici, 1984] and (particularly for applications) [Wilf, 1990].

7.2 TIteration theory and functional equations

[teration theory is concerned with the behaviour of sequences generated by repeat-
edly applying a given map f to an initial point. Let xn41 = f(xn) = <> (xy),
n =0,1,2,..., with x; given. The sequence < Xg, X1,Xs,... > is the orbit with
seed Xg.

Around 1870 Schroder [Schrdder, 1871] proposed studying the orbit of xo under
iteration of the map f, by trying to find a new coordinate system in which the orbit
looks simpler. In particular, we can try to make the effect of f something that can
be explicitly iterated, like the function ‘multiply by a constant’. (The history of
this idea can be read in Dan Alexander’s book [Alexander, 1994].) This will be true
if the map from old to new coordinates o satisfies Schroder’s functional equation

for some constant s:
oof(x)—so(x) =0  Vx. (7.1)

Note that this a functional equation; that is, an equation in which the unknown o
is a function. It follows that f<*>(x) = o= > (s*o(x)) for all positive integers k.
Thus the problem of iterating f is solved, if the function o exists. The difficulty
has been transferred to the problem of finding o.

Schroder found several explicit solutions to his equation in terms of elementary

functions. However, there are not many such cases. Here are some examples:

1. fi(x) =2(x +x2), o1(x) = log(1 + 2x)/2
2. fo(x) = —2(x + x2), 02(x) = V3/2(cos< > (—1/2 — x) — 27/3)
3. f3(x) =4(x +x?), 03(x) = (sinh~"'>(/x))2.

Actually, cases two and three are conjugate with respect to the function h(x) =
—3/2 — 2x. By this I mean that hofs = fy o h. It follows that ho f5*> =f5*>oh
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for k=1,2,3,..., so that the two maps are completely equivalent from the point
of view of iteration.

In the general case we try to find series solutions to the Schrdder equation, the
point being that if we can show that it has a unique (real or complex) analytic
solution, then the series solution must represent this function. On the other hand,
the series solution may not converge. It is then just a formal power series solution.
A slightly different point of view is that we want to distort or perturb the complex
plane to make the orbit look simpler. The Schroder series is the ‘perturbation
expansion’ which does this. As more terms are generated, we get a more and more
accurate representation of the change of coordinates. Convergence of these series
is often a difficult question and will not be considered here. In this section I will
discuss algorithms for finding formal power series solutions. Before doing so, I

summarize several classical functional equations:
S Schréder equation [Schrdder, 1871]: ocof —so =0
[ Inhomogeneous Schroder equation: ocof—so—g=0
A Abel equation [Abel, 1964 xof—ax—a=0
P Poincaré equation [Poincaré, 1890]: o (px)—fom =0
B Bottcher equation [Béttcher, 1904]: Bof—p%2=0
J Julia equation [Julia, 1918]: tof—f'1=0.

Here a, s and p are constants, and f is a given formal power series (as is g in case
I), which may or may not be the Taylor expansion of some analytic function. px
represents the function ‘multiply by p’. f must be a nonunit, which means that if it
does represent an analytic function, then there is a fixed point at zero. The formal
power series with a Greek name is the unknown. Of these, the Poincaré equation
needs no discussion since it is converted to the Schréder functional equation by
o0 = m<"!>. The Abel equation tries to make f look like the function ‘add a’ in the
new coordinate system. The constant a may be taken to be unity. The Bottcher!
equation tries to make f look like the squaring function. It has formal power series
solutions iff f = [0,0,fy,...] with fy # 0. In the Bottcher case, one may easily

generalize to fof— 3™ =0, Z > m > 2. The Julia equation is in some sense more

I Béttcher is also known in French as Botkher, and in Russian as BéTxepms.
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general than the others. f’ is the formal (termwise) derivative of f. Also worth

considering is the functional equation

vof = f'v/ord(f)
ord(v) = ord(f—x)

(ord(f) being the degree of the first term of f having non-zero coefficient) which,
according to [Brent and Traub, 1980]|, was proposed by Knuth. It also generalizes
several of the classical equations.

Some conversions are available between these functional equations in the case

when o exists. The proofs are simple exercises.
J & S:t=co/0.
A & S5: ax=alogoo.
B « I B(x) =xexp(o(x) —1), s=2, g(x)=1+log[f(x)/(x*f'(0))].

The books of Kuczma [Kuczma, 1968; Kuczma, Choczewski and Ger, 1990] are

good references for the general theory of functional equations.

7.3 An algorithm for the Schroder equation

Let the given formal power series be f = [0,f,fs,...]. Of course f may be a
polynomial of finite degree, but this makes no difference to the following discussion.
We are trying to find a formal power series 0 = [0, 01, 09,...]. We plug this into
the left-hand side of S, getting

[O, 0'1f1 — S0, 0'1f2 — S09 + 0'21/:%, .. ]

which should be zero. Thus s = f, 0} is arbitrary (= 1, say), 0, = fy/(f; — 2),
etc. How can we get a iterative formula from this? The key observation is that
each unknown oy first appears in the coefficient of x*, multiplied by f; — f¥. (Proof
by induction.) Thus we see straight away that there is no solution if f; is zero or
a root of unity. In particular, in the complex case we cannot have f; = exp(27i()
if  is rational.

[ thus get a practical algorithm as follows. At the ith step, I compute the
coefficient of x' in oo f—so, but with o; set to zero. This coefficient is then oy (f; —
fi). 1 give the algorithm in Maple, where coeff (f,x,j) means the coefficient of

x) in the formal power series f. The inhomogeneous case is a trivial variant.
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schroeder:=proc(f:polynom(anything,x) ,n:posint)

local sigma,i,u,fl,fi:

f1:=coeff(collect(f,x),x,1):

sigmal[1]:=1: u:=0: fi:=f:

for i from 2 to n do
u:=series(utsigmali-1]*fi,x,n+1):
fi:=series(fxfi,x,n+1):
sigmal[il :=coeff(u,x,i)/(f1-coeff(fi,x,i))

od:

convert([seq(sigmalil*x~i,i=1..n)],‘+*)

end:

This is an O(n?) algorithm, as there are three nested loops. Note that asymp-
totically faster algorithms are known (for example, see [Brent and Traub, 1980]),
but these are very complex and not optimal for short series. Here is an example

output: the Schroder series of 2x + 2x? is
x —x? 4+ 4/3x3 — 2x* +16/5x° — 16/3x% 4+ 64/7x" — 16x® + 256/9x° + - - - |

which is indeed the expansion of log(1 + 2x)/2 as claimed in example 1 above.

7.4 An algorithm for the Bottcher equation

boettcher:=proc(f:polynom(anything,x),n:posint)

local beta,B,i,u,f2,fi:

f2:=coeff(collect(f,x),x,2):

betal[1]:=f2: u:=0: B:=f2*x: fi:=f:

for i from 2 to n do
u:=series(u+betali-1]*fi,x,n+2):
fi:=series(f*fi,x,n+2):
betal[i] :=(coeff (u,x,i+1)-coeff (expand(B~2),x,i+1))/2/£f2:
B:=B+beta[i]l*x"1i

od:

B

end:
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This algorithm is a variation on the same idea. Here 3; first appears in the co-
efficient of x'*! in B o f — 32 = 0, multiplied by 2B;. Setting ; = f, starts the

iteration.

7.5 An algorithm for the Julia equation

Series of the form x+fyx2+O(x3), f, # 0 have Julia series. More generally, we may
consider x + fax™ + O(x™*!), f,. #0, Z > m > 2. Actually, the correspondence

f <> L is one-to-one, and so is invertible. The Julia series begins

3 5
[0,0,1, f3/fy — fo, 51% + fa/fs — §f3, cl]

The following algorithm computes any number of terms. Here ; first appears in
the coefficient of x'*! in Lo f —f't = 0 (1 > 3), multiplied by (i — 2)fs. Setting

o = 1 starts the iteration. In the following Maple code j represents t.

julia:=proc(f:polynom(anything,x),n:posint)
local df,iota,j,i,u,f2,fi:
f2:=coeff(collect(f,x),x,2):
df :=diff (convert (f,polynom) ,x):
iota[1]:=0: iotal[2]:=1:
fi:=fxf: j:=x"2: u:=0:
for i from 3 to n do
u:=series(u+iotal[i-1]*fi,x,n+2):
fi:=series(f*fi,x,n+2):
iotali]l :=(coeff (expand (df*j) ,x,i+1)-coeff (u,x,i+1))/(i-2)/f2:
j:=j+iotalil*x"i
od:
J
end:

As pointed out in Kuczma [Kuczma et al., 1990], Baker has proved that the Julia
series rarely converges. In fact if it does for a meromorphic function f, then f must
be of the form x/(1 + bx) for some constant b. A simple example is f = x/(1 —x),

L= x2.
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7.6 The Chebyshev equation

The Chebyshev polynomials T,,(x) = cos(n arccos(x)) are explicitly iterable since
Tho T = Tiun, so we might consider the ‘Chebyshev functional equation’ To f —
T,o1T = 0. There are no formal power series solutions, as is easily checked by
trial substitution. However, it is easy to show that if P(x) = (px + (px)1)/2
where p™ ! = 1, then P(x™) = T, 0 P(x). It follows easily that if we just solve
the Bottcher equation of f for 3, then T =1 o (3 solves the Chebyshev functional

equation.

7.7 Iterative square roots

Here is a ‘real’ application of these algorithms. The problem is to compute an
iterative square root of the function f(z) = z? + 1; that is, a function f<'/?> having
the property that f<1/2> o f<1/2> = f. (Note that there is nothing special about
this function; we could consider z? + ¢ for arbitrary complex constants c). Recall
the following concepts: a fixed point is a point x* such that x* = f(x*); an n-cycle
is an orbit which returns to its seed after n iterations, so that xo = f<""(xg).
First note that f cannot have a global iterative root, that is, one defined on the
whole complex plane. We see this by noting that f has two distinct fixed points,

f<2>

and since is a quartic polynomial, f has precisely one (prime) two-cycle, {z%

say. Now suppose that f<!/2> is a global iterative root of f. Then
f<2> o f<1/2>(Zj_*) — f<1/2> o f<2>(Z:_*) — f<1/2>(Zi*).

Thus f<V/ ?>(z**) belongs to another two-cycle. But this is impossible as I have
shown above that there is only one such. Thus any iterative root of f can only be
defined on some subset of the complex plane, at least excluding {z¥*}.

However, a formal power series solution to the Bottcher equation (which does
in fact converge in a neighbourhood of infinity) may be constructed for the related
function F(x) = 1/f(1/x). Thisis B = x — x3/2 + x®/8 4+ 5x7 /16 — 101x? /128 +
321x!1/256 + ---. Now an iterative square root of F is given by B<>(B(x)v2)
(this is easily checked), and of f by B<>(B(1/x)V2). Note that this function is
not real analytic, and its domain cannot include the fixed points of f mentioned
above.

Here is another example, using Julia's equation: having found t, solve the

equation to g — g't = 0 for g with the form [0,1,f5/2,...]. Then go g = f, that
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is, g is an (at least formal) iterative square root of f.
For example, the function f(x) = e*—1 is known to have a iterative square root

g real analytic on (0,00). The Julia series L of f is
[0,0,1,—1/6,1/24,—1/90,11/4320,—1/3360,...],

which cannot converge for any x > 0 by Baker’s result, and g is thus
0,1,1/4,1/48,0,1/3840,—7/92160,1/645120,...].

All the above algorithms can be rewritten so as not to use the Maple ‘series’
command, but with a considerable loss in efficiency. However, for conversion to
other languages such as C, this may be useful. As an example, here is the Schroder

algorithm with the series implemented as arrays:

# Auxiliary arrays... t=f"i, u=s@f
sigma:=array[1..n]: sigma[1]:=1:
t:=array[1l..n]: u:=arrayl[1l..n]:
for i from 1 to n do t[i]:=coeff(f,x,i) od:
for i from 1 to n do ulil:=sigmal1l*t[i] od:
f1l:=coeff(f,x,1): fli:=f1"2:
for i from 2 to n do # get sigmalil
for k from n to 1 by -1 do
t[k]:=0:
for j from 1 to k-1 do t[k]:=t[k]+coeff(f,x,j)*t[k-j] od
od:
sigmal[i] :=ulil/(f1-f1i):
fli:=f1ixf1:
for k from 1 to n do ulk]:=ulk]+sigmal[i]*t[k] od:
lprint(sigmal[i])
od:

7.8 A new algorithm for solution of functional

equations using algorithmic differentiation

I describe in this section an application of algorithmic differentiation techniques
(see Appendix B) to the solution in formal power series of linear functional equa-

tions. This gives a new algorithm which is not as fast as formal Newton-based
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techniques, but is easily implemented and has a complexity max(comp(n),n?),
where comp(n) is the complexity of computing n terms of the composition of two
series.

Here I describe an easily-implemented algorithm which solves the general linear
nth order functional equation for the unknown series ¢:

n

Y a(x)d o F7 (x) +b(x) =0,

k=0

where ay, b and f are given formal power series and, as usual, f<*> indicates the
k-fold composition of f with itself. For composition to be well-defined, we require

the constant term of f to be zero. This equation includes the standard cases of:
1. Schréder’s equation (n =1,a; =1, ag(x) = —f1, b =0);
2. Abel’s equation (n=1,a; =1,q0=1,b = —1);
3. Julia’s equation (n =1,a; =1, ap(x) = —f'(x),b = 0);
4. Series reversion (n=1,a; =1, a9 = 0,b(x) = —x); and

5. g-difference equations (f(x) = gqx).

7.8.1 Method

The key observation is that the equations to be solved form a lower-triangular

linear system. For example, in the case of Schroder’s equation, we have

[0 0 o - |la] [o]
f2 f%—fl 0 O9
f3 3f1f2 f?—fl O3 -

The lower triangularity follows from the fact that o, depends only on f; for
1 < k. We see that given the matrix above, the desired solution is easily obtained
by forward-substitution. The problem remains of how to compute the matrix.
Though it is not immediately obvious, algorithmic differentiation techniques (see
Appendix B) are ideal for this purpose. These methods rely on extending the
computer representation of numbers to include the gradients of computed quanti-
ties with respect to specified independent variables. In our application, we notice

that the gradients of the terms of the expression o o f(x) — f;0(x) with respect
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to the variables o; are precisely the desired matrix elements, and what is more,
the dependence is linear, so that the gradients may be computed even though the
values of the independent variables are unknown! Thus, the key step is the pro-
gramming of standard algorithms for composition, multiplication, and addition of
formal power series described in § 7.2 in the extended gradient arithmetic. I now

give an example.

7.8.2 Example

Consider first Schroder’s equation (7.1). To make the algorithm explicit, I exhibit
the C++ code:

ps solve_schroeder(ps £){ // Returns Schroeder series of PS f

int i, j, n = degree(f); // n is number of available terms

ps sigma(n); // Construct sigma, initially zero

sigma[0] = 0; // Schroeder series, constant term

sigmal[1] = 1; // arbitrary choice of scaling

dim = n; // dim is number of independent variables
for (i=1; i<=n; i++){ // declare sigma_i to be indpt var number i

ad x(sigmalil,i);

sigmal[i] = x; }
ps d = sigma&f - f[ll*sigma; // & is power series composition
for (i=2; i<=n; i++){ // Forward substitute
double sum = 0; // d[i]l[j] is Jacobian matrix element

for (j=1; j<i; j++) sum += d[i][jl*sigmalj];
sigma[i] = -sum/d[i][i]; }

return sigma;

This code makes use of my own formal power series and automatic differentiation
C++ software (see Appendix B), which defines types ps (power series) and ad
(automatically differentiated) respectively. As a test, I computed the Schroder
series for the three functions f given in § 7.2 for which the series converges and
represents a known elementary function. In all cases the numerical solution agrees
with the Taylor expansion of the exact solution. As another example, in which there
is no exact solution in terms of elementary functions, I consider the computation of

the iterative square root of 2(e*—1), that is, a series ¢ such that pod(x) = 2(e*—1).
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Such a series is clearly given by 0= > (v/20(x)), where o is the Schrder series of

2(e* —1). My algorithm computes
$(x) = 1.41421x + 0.292893x2 + 0.02138x> 4+ 0.00054x* + 0.000033x> + O(x").

This series appears to converge for |x| < 2, though of course that fact cannot be

established by my method.

7.9 More on Julia’s functional equation

)

Proteus: ‘Why, this is the ring I gave to Julia

The Two Gentlemen of Verona, Act 5, scene 4

Julia’s equation is to f — 't = 0, where f is a given element of the ring of formal
power series over C. fy = 0 is assumed throughout this section. Julia’s equation
is sometimes known as Jabotinsky's equation [Reich, 1985]. The Julia series t
is sometimes known as the associated series to f [Muckenhoupt, 1962], iterative
logarithm [Kuczma et al., 1990|, or generator [Labelle, 1980]. Its importance lies
in applications to the study of the iteration of f. In particular, it can be used
in place of Abel’s equation to avoid the singularity at the origin that the Abel
function of f possesses. I write ¢ = julia(f). If ¢ is a Julia series for f, then so is ct
for any nonzero constant c. Apart from this scale ambiguity, the correspondence
f ¢ L is one-to-one, and so is invertible. I will choose the normalization t,, = f,,,
where m = ord(f — x) is the index of the first nonzero coefficient of f.

Here are a few simple examples: If f = x + fox2 + O(x3), fy # 0, then
21,2 3 3 5 3
L = (fg — fQ)X + §f2 + f4 — §f3f2 X 4., (72)

If f =x/(1 —bx),b = constant, then = bx?; and if . = x® + x®, then f =
X+ x>+ 5/2x5 4 -

7.9.1 Algorithms

Labelle [Labelle, 1980] gives the following formula:

julia(f) = Y (~1)F1 - gi(x),

k>1



116 CHAPTER 7. FORMAL POWER SERIES ALGORITHMS

where go = X, gk11(X) = gxof — gk, k = 0,1,.... (The similarity to the ordi-
nary logarithm function is clear.) However, this produces an O(n*) algorithm. I

therefore designed the following O(n?) algorithm:

// Solve Julia eqn for f. (from ps.h).
// where f=x+fm*x"m+...+fn*x"n, fm!=0, 2<=m<=n.
template<class Scalar> ps<Scalar> julia(ps<Scalar>& f){
int i,k,1,m=2,n=degree(f);
while (!(fabs(f[m])>0.0) && m<n) m++;
Scalar q,fm=f[m],one=1.0;
if( n<m || fabs(£f[0])>0.0 || fabs(f[1]-one)>0.0 ){
cerr<<"Bad input to julia, exiting.\n"; exit(1); }
ps<Scalar> j(n),u(n),fk(n); jlml=one;
fk=powint (shif (f,-1) ,m-1);
for (k=m+1; k<=n; k++) { // get jlk]
// terms 0..k-1 of j are now correct. fk is now (f/x)"(k-2)
for (1=n-1; 1>0; 1--) { // fk <- (£/x)*fk;
q=0.0; for (i=0; i<=1; i++) q=q+f[i+1]1*fk[1-i]; fk[1l]l=q; }
// fk is now (f/x)~(k-1), all terms correct
// update j&f, storing result shifted left by m-1...
for (i=k-1; i<=n+m-1; i++) uli-m+1l=uli-m+1]1+(j[k-11*fk[i-k+1]);
// u is now (j&f)/x"(m-1). Next compute (f’*j) [k+m-1]...
g=0.0; for (i=m; i<k; i++) q=q+(i+1)*f[i+1]*j[k+m-1-i];
jkl=(q-ulk])/((k-m)*fm) ;
} // got jlkl

return j;

7.9.2 The Julia function and Lambert’s W function

Theorem 8.5.3 in [Kuczma et al., 1990] tells us that if f is meromorphic and regular
at the origin, and f = x+f,x%+. .., and julia(f) has positive radius of convergence,
then f(x) = x/(1 — bx). However, if we allow a branch point at the origin, then

f =x/(1—arx")""" has the convergent Julia series ax” for r = 2,3,4,.... In most
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cases the Julia series diverges. It is, however, Borel summable in a suitable domain
[Ecalle, 1981].

What about when the Julia series is a polynomial? Presumably then the series
f diverges. However, we may compute the function f by solving the differential
equation f'(x) = to f(x)/u(x). While thinking about these ideas, I discovered
an interesting connection between Julia’s functional equation and Lambert’s W
function [Corless, Gonnet, Hare, Jeffrey and Knuth, 1995]. I will briefly describe
this here. Lambert’s W function is the inverse of the function t — texp(t). I deal

with formal power series of the form
f(x) =x(1+bx* +Ox*™); b #0, k>0. (7.3)

It is well known [Kuczma et al., 1990] that under formal conjugacy, such series
fall into conjugacy classes labelled by k and a complex parameter known as the
iterative residuum, which can be calculated as the coefficient of x~! in the formal

Laurent series 1/ julia(f). For example, for k = 2, the iterative residuum is

1 —bs/b2,

and for k = 3, it is

3/2 —bs/b3 + b3 /b3,

It also follows from the results of [Labelle, 1980] that every formal power series of

the above form is formally conjugate to a series whose Julia series is
Wap = ox(x* + Bx*¥) (7.4)

for some constants « and 3. We may in fact choose « = 1 by the normalization
discussed above. 3 is a function of the iterative residuum.

We may therefore turn the question of finding the Julia series t of f around;
rather than proceeding from f to (, we may take t to be of the form (7.4), and ask
what formal power series (v, say) has that Julia series. We then know that there is
a formal conjugacy from f to v. However, then v may be computed directly from

Julia’s functional equation in the form

oy V(1 —Dv)
" T
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with the initial value v(0) = 0. Since this differential equation has a singular point
at the origin, we need to add the condition v/(0) = 1 to pick out the solution of
interest.

The exact solution of this is explicitly

1+ Wi+ exp{log(—b+1/x) + (1/x—c)/b—1}/b] x<1/b
bv(x) ' =< 1 x=1/b
1+ Wl—exp{log(+b—1/x)+ (1/x—c)/b—1}/b] x>1/b

where W is Lambert’s function, and c is a constant. Although it is not immediately
obvious, v is differentiable on the whole positive real axis.

This function v is therefore a kind of universal function for the iteration of
series of the form (7.3). It is plotted (for various values of b, and normalized so
that v(1) = 1) in Figure 7.1.

All iterative properties of f may be deduced from v. And, of course, when the
formal power series involved actually converge and represent analytic functions,
this result gives the iterative behaviour of the functions. I believe that more useful

results could be derived from this point of view.
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bv(x/b),b =0.25,0.5,0.75,...,2.0

0 | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Figure 7.1: The universal Julia functions v(x)
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Appendix A

How to calculate the Feigenbaum

constants on your PC

(This appendix is included merely as a historical curiosity. It was the first article
I ever wrote on the subject, and the one I still get most requests for! It is [Briggs,
1989])

A.1 Introduction

The family of functions f, : R — R (dependent on the parameter a € R) defined
by the map

x — fo(x) = a —x? (A1)

has the property that there exist critical values a of a, at which bifurcations occur

in the sets of limit points of sequences {x;} defined by the iteration
Xip1 = fa(xi), 1=0,1,2,...; xo < va. (A.2)

[f the set of limit points for a given a has n elements, we describe the iteration
as having an n-cycle. In other words, the sequence x; is asymptotically periodic
with period n. There exist cycles of each integer period [Keener, 1986|; amongst
these we are especially interested in the superstable n-cycles, that is, those that
contain O as one of the cycle points. Since the maximum of f occurs at 0, it follows
that the stability

An(a) = ﬁ dfalx) (A.3)
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is zero at a superstable n-cycle.
Let a! be the least value of a at which a bifurcation to period 2' occurs. It is

known from the work of Feigenbaum [Feigenbaum, 1980d] that the sequence

a¥ . — af
Si=——2 i=23/4,... (A.4)
ap — a4

is convergent to a value 6 ~ 4.669. We describe in this note a direct method of cal-
culation of 8. Previous methods have either used a numerical search for bifurcation
values af, which is unreliable because the limited precision of computer arithmetic
introduces artificial periods into the sequence x;, or methods using power series
approximations [Feigenbaum, 1980d]. The number ¢ is of interest in several phys-
ical and biological problems [Cvitanovié, 1984; Briggs, 1987] which are modelled
by equation (A.1). For example, it is equivalent to the logistic equation of popula-
tion dynamics. Of course in practice a few digits of 6 are sufficient. Nevertheless,
the problem of calculating 6 to many places has the same fascination as did the

calculation of 7t to earlier generations of mathematicians.

A.2 The direct method

We consider the sequence of polynomials in a defined by

br(a) = a—[be1(a)l? k=1,23,... (A.5)
bo(a) = 0. (A.6)

The following property makes these polynomials useful for our purposes.
Lemma 3 Let k =2". Then f, has a superstable k-cycle iff by(a) = 0.

The proof is trivial. Thus superstable 2™-cycles occur at zeros of bon. We denote
by a; the least parameter value at which a superstable 2'-cycle occurs. Clearly
a bifurcation value a} must occur between a; ; and a;. We conjecture that the
stars can be removed in equation (A.4) without change to the limit §, although we
do not attempt to prove this. We will instead calculate as if  were defined with
superstable values a; in equation (A.4), and see whether our § agrees with that
given by Feigenbaum.

Thus we can calculate d to arbitrary precision by locating zeroes of the polyno-

mials by. For this purpose Newton’s method is satisfactory, so that the complete
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method is:
Clg - aifl—}—wa 122)3>4>"' (A7)
i-1
. R e
Q" = -2l g (A%)
b'zi(a)i)
b’k((l) = 1—2b’k,1((1)bk,1((1), k:1,2,3,... (Ag)
a; = limd (A.10)
j—oo
51 — M (A.ll)
aiy — ai1
5 = limé; (A.12)
1—00

The first equation produces an initial approximation to the next superstable a
value, which is refined by the Newton iteration; b’y is the derivative of by. Thus
a{ is a sequence convergent to the ith zero of byi. The process was programmed in
Turbo Pascal version 4.0, using extended precision, and started with a = 0;a? =
1;5 =0 and &; = 3.2.

The rate of convergence of appears to be roughly linear, so that about one more

significant decimal digit is gained every two iterations. The results were:

O© 00 N O O b W N

e
N —, O

13

e i e = = e N S o =

a_i

.3107026413
.3815474844
.3969453597
.4002530812
.4009619629
.4011138049
.4011463258
.4011532908
.4011547825
.4011551020
.4011551704
.4011551851

S N Y N Y N Y N Y O N Y

delta_i

.21851142203809
.38567759856834
.60094927653808
.65513049539198
.66611194782857
.66854858144684
.66906066064834
.66917155537963
.66919515602875
.66920022907521
.66920131316059
.66920154839814

The algorithm depends on finding the correct zero by Newton’s method of a high

degree polynomial with many closely spaced zeros. Thus it will fail if the initial

approximation is not close enough to the required zero. This is the limiting factor

determining the maximum precision of the above results.
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A.3 Feigenbaum’s «x

If dy denotes the value of the nearest cycle element to 0 in the superstable k-cycle,
then the sequence
di

L i=1,2,3,... (A.13)
dits

X =

is convergent to a value about 2.502. This constant is most easily calculated by

realizing that the derivative b’ defined above must satisfy

. bliji(ain)

(To see this, consider the slope of the line joining successive ‘corners’ of the graph

of the figure.) Taking the calculation as far as byy gave o = 2.502907875095.



Appendix B

Some computational techniques

The work described in this thesis makes considerable use of a variety of novel
computational techniques. This appendix briefly discusses some of them. Most of
my computing was done in C++ [Stroustrup, 1991|, except for the occasional use of
fortran when I needed to use very high precision, for which [ used Bailey’s mpfun
[Bailey, 1993b]. C++ has many advantages for this type of work, principally the
ability to have user-defined types known as classes with overloaded operators and
functions (that is, redefinition of symbols such as +,—, *, /, exp, sin,...). Also
very useful is the template facility which allows parameterized types. I thus wrote
classes for formal power series (Chapter 7), algorithmic differentiation, complex
numbers, vectors, matrices etc. One of my most useful classes was quad, which
implements 32 decimal place floating-point arithmetic. This allowed me to verify
many results first computed in double (16 decimal place) arithmetic. In fact, some
results involving iterated maps could not be obtained at all in double arithmetic.

All of this software is available at http://www.pd.uwa.edu.au/Keith/.

Algorithmic (or automatic) differentiation methods rely on extending the com-
puter representation of floating-point (real or complex) numbers to include the
gradients of computed quantities with respect to specified independent variables.
The chain rule is then used to propagate gradients through a series of compu-
tations. This is most naturally achieved in languages such as C++ which allow
operator and function overloading. In this case, the computation of gradients be-
comes completely transparent to the programmer. For a recent survey of the field,
see [Griewank and Corliss, 1991].

As an example of the usefulness of C++ techniques, here is the code used in

§ 2.4 and § 4.3 to explicitly form the Borel sum of an asymptotic series.

125
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// Sum series ‘a’ by Loeffel’s method.
// Returns estimate of a(z).

// Result should be independent of beta.
// K M Briggs 95 May 10

#include "ps.h" // defines class template ps

template<class Scalar, class Float>
Float Loeffel(const ps<Scalar>% a, const Float z, const Float beta){
Float zero=0.0, one=1.0;
if (z==zero) return al[0];
if (z<zero)
{ cerr<<"Loeffel: z<0 not implemented.\n"; exit(1); }
if (beta<=zero)
{ cerr<<"Loeffel: beta<=0, quitting.\n"; exit(1); }
int i,k,n=degree(a);
ps<Scalar> f(n), sigma(n), ft(n);
Float q, fact=one;
f[0]=a[0]; sigma[0]=zero;
for (i=1; i<=n; i++)
{ g=i; fact=q*fact; flil=alil/fact; sigmal[i]l=beta/q; }
ft=f&sigma; // & is series composition
Float y=0.0,bz=1.0+beta/z;
for (i=n; i>0; i--) { k=i+1; y=kxy/(i+bz)+ft[i]; }
return y/bz+ft[0];
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I was born in Cambridge, England and educated at the University of Adelaide,
where I completed an Honours degree in Mathematical Physics. I have held research

and teaching posts in physics and mathematics as follows:

84-85 Demonstrator in Physics, Coleg Prifysgol Gogledd Cymru.
86-88 Tutor in Physics, University of Adelaide.

89-90 Research Associate in Mathematics, La Trobe University and Royal Mel-

bourne Institute of Technology.
91-92 Research Fellow in Mathematics, University of Melbourne.
93-94 Associate Lecturer in Applied Mathematics, University of Adelaide.
95-96 Research Associate, University of Western Australia.

97-  Postdoctoral Research Associate, University of Cambridge.

My research has been in in several areas: experimental chaos theory, relativistic
electrodynamics, Feigenbaum universality in discrete dynamical systems, lattice
models in statistical mechanics, colloid simulation, nonlinear time series analysis,

quasilattice random walk theory, and musical acoustics.
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