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BT Research at Martlesham, Suffolk

* Cambridge-lpswich
high-tech corridor

* 2000 technologists
* 15 companies

* UCL, Univ of Essex
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Mathematics in telecoms

* graph theory - network models
optimization of network topology
information theory

Markov chains & queuing theory

*

*

*

* coding, compression, and cryptography
* packet protocols & traffic characteristics
* asynchronous distributed algorithms

* caching and data distribution strategies

* optimization of dynamic processes on networks (typically convex
but non-smooth)

* business modelling & financial forecasting

* complex systems?
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Talk outline

* graph concepts and problems

* connectivity

* chromatic number and clique number

+ channel allocation

* the challenge -

Keith Briggs

to balance (exact) theory with (real) practice
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Graph concepts

cligue - a complete subgraph

maximal cligue - a clique that cannot be
extended to a larger one

* lonely set - a pairwise disjoint set of nodes
(stable set, independent set)

*

_—
) o

* colouring - an assignment of colours to

\ / nodes in which no neighbours have the
same colour

/ * chromatic number y - the number of

colours in a colouring with a minimal num-
ber of colours

+ loneliness « - the number of nodes in a
largest lonely set

* cligue number w - the number of nodes in
a largest maximal clique
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The Bernoulli random graph model G{n,p}

* let G be a graph of n nodes

* let p = 1—¢q be the probability that each possible edge exists
* edge events are independent

* let P(n) be the probability that G{n, p} is connected

% then P(1) = 1and P(n) = 1-31=, (P21 P(k)g" =P
forn—=234,....

P1) =1

P2) = 1—gq

P(3) = (2¢+1)(q—1)°

P(4) = (6¢°+6¢°+3q+1)(1—q)

P(5) = (24¢°4+36¢°+30¢*+20¢°+10¢°+4g+1) (¢—1)

%* as n — oo, we have P(n) — 1—ng™ .
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Probability of connectivity - the G(n,m) model

* problem: compute the numbers of connected labelled graphs with
nnodesand m =n—1,n,n+1,n+2,... edges

* exponential generating function for all labelled graphs:

i 1+w ”/n'
n=0

* 1.e., the number of labelled graphs with m edges and n nodes is
[w™ 2" g(w, z)

* exponential generating function for all connected labelled graphs:
c(w,z) = log(g(w,z))

2 3 4

— z+w%+(3w2+w3)%+(16w +15w* + 6w’ 4w )Z'+
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Probability of connectivity for G(n,m)

P(n,n—1) 1_7,-1 o2 1127 -3, 5189 4 457915 5
* gngrnp172g ™ 2 +192 120" "o ™ Tt T
570281371 . —6 291736667 _7
Te5704s600 "0 Tiaosmoigo O ( )

> check: n = 10, exact=0.1128460393, asymptotic=0.1128460359

« Hl) AT 2 8 e +0 (1)

> check: n = 10, exact=0.276, asymptotic=0.319

P(n,n+1) 1/2 , 515 _28 ¢, —3/2, 788347 2 308 ¢\ —5/2
K Gner-npi/2g 2§n T 5 én 51810 77 &N +

O (n_3)

> check: n = 10, exact=0.437, asymptotic=0.407
> check: n = 20, exact=0.037108, asymptotic=0.037245

> check: n = 100, exact=2.617608 x 10~ %, asymptotic=2.617596 x 10~ >
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Hard graph problems

* finding v, o and w is proven to be NP-complete

> this means that it unlikely that any algorithm exists which runs in time which is
a polynomial function of the number of nodes

* we therefore have two options:

> use a heuristic, which is probably fast but may give the wrong answer
> use an exact algorithm, and try to make it as fast as possible by clever coding

* the theory is well developed and presented in many places, but
little practical experience gets reported

* therefore, ti is interesting to try exact algorithms for these prob-
lems to determine how big the problems can be in practice, and
compared the timings with approximate (relaxed) algorithms
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Chromatic number y

* many papers appeared in the 1980s about backtracking (branch-
and-bound) methods. Some had errors

> idea: start to compute all colourings, but abort one as soon as it is worse than
the best so far

* can be combined with heuristics (greedy colourings) and exact
bounds like w < ¥ < A+1, where A is the maximum degree

* tradeoff in using heuristics depends on type of graph

* in practice (with a well-written C program), up to 100 nodes is ok,
and up to 200 for very sparse or very dense graphs

* best results are in a PhD by Chiarandini (Darmstadt 2005)
http://www.imada.sdu.dk/ marco/public.php

» determining y may be easy for many real-world graphs with
specific structures (Coudert, DAC97)
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Achlioptas & Naor

* The two possible values of the chromatic number of a random
graph Annals of Mathematics, 162 (2005)

http://www.cs.ucsc.edu/ optas/

» the authors show that for fixed d, as n — oo, the chromatic
number of G{n,d/n} is either k or k41, where k is the smallest

integer such that d < 2k log(k). In fact, this means that k is given
by [d/(2W(d/2))]

* G{n,p} means the random graph on n nodes and each possible
edge appears independently with probability p
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Achlioptas & Naor cotd.

chromatic number of G{200,d/200}

£n

chromatic number
i

Ll
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Achlioptas & Naor - my conjecture

* the next graph (each point is the average of 1 million trials) sug-
gests that for small d, we have Pr|x € |k, k+1]] ~ 1—exp(—dn/2)

log,(1-Pr(x € [kk+1]))

20 40 60 80 100 120 140
number of nodes
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Cligue number

* In Modern graph theory, page 230, Bollobas shows that the clique
number of G(n,p) as n — oo is almost surely d or d+1, where d

d
2

is the greatest natural number such that (Z’)p( ) > log(n)

+ How accurate is this formula when 7 is small?
* We have d = 2log(n)/log(1/p)+O(loglog(n)).
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clique number

Cliqgue number - simulation results

clique number of G(200,p)
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Counting graphs

Number of graphs on n nodes with chromatic number k:

n= 1 2 3 4 5 6 7 38 9 10

k __________________________________________________________

2 0 1 2 6 12 34 87 302 1118 5478  AQ076278
3 O O 1 3 16 84 579 5721 87381 2104349  A076279
4 O 0 O 1 4 31 318 5366 156291 7855628  A076280
5 O O O O 1 5 52 867 28722 1919895  A076281
6 O O O O 0 1 6 31 2028 115391  A076282
7 O O O O 0 0 1 7 118 4251

3 O O 0 O 0 0 0 1 3 165

9 O O O O 0 0 0 0 1 9

10 o0 O O O 0 0 0 0 0 1

11 O O 0 O 0 0 0 0 0 0

N—

(A-numbers from http://www.research.att.com/~njas/sequences/
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A real-world hard probelm

» | use real 802.11b spectral characteristics & interference
behaviour

» the channel allocation problem is to minimize the maximum
interference problem

* randomly placed nodes

* hexagonal lattices
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The channel allocation problem

* choose x such that some objective function is minimized

* This is a combinatorial optimization problem, so to find the exact
solution we must explicitly enumerate and evaluate all channel
assignments

% the number of assignments grows as (number of nodes)"/™Pe" o channets

and becomes infeasible to do a complete search beyond about 12
channels and 12 nodes

* SO we use branch and bound method for the maximum interference
problem.

> we build a tree showing all possible assignment vectors with the depth of tree

representing the number of nodes being considered and each leaf a different

complete assignment. We do this by testing partial solutions and disregarding
ones worse than the best so far.
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The maximum interference problem
* the maximum interference at node i is

w; — Imax Iz’j
71=1,....n
J7

* the objective function is w(x) = max; w;(x); that is, the worst
maximum interference at any AP

« the optimization problem is

min w(x);
x

that is, we aim to minimize the worst maximum interference

* this is feasible to solve exactly if good pruning strategies can be
found
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Pruning and preprocessing

* to have any advantage over complete enumeration efficient prun-
ing strategies must be found

* testing of partial solutions to determine possible good solutions

> in a typical example the number of function calls can drop from 6.10° to about
6000

* calculation of minimum separations from interference matrix

> this can usually give a further 50 —"75% reduction in function calls

* While branch and bound is powerful on its own it is sensitive to
the order in which the nodes are considered.

* by using the k-means heuristic to locate clusters and analysing
these first pruning, become much more effective
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Randomly placed nodes: before & after optimization

typical improvement: 2Mbps coverage goes from 50% to 90%.
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Hexagonal lattice - 3 and 12 channels

typical improvement: 12Mbps coverage goes from 26% to 100%.
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Two-network optimization

First optimize all 20 nodes, then imagine the first 10 nodes belong to a competitor's
network and are optimized and then frozen, and then we come in with the second
10 nodes. How is our coverage and SNR affected by the competitor's network?
(Answer: only about 2dB.)
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Scaling of interference & throughput with node density
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Results here are averaged over many instances of Poisson point process.
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