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BT Research at Martlesham, Suffolk

F Cambridge-Ipswich
high-tech corridor

F 2000 technologists

F 15 companies

F UCL, Univ of Essex
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Mathematics in telecoms

F graph theory - network models

F optimization of network topology

F information theory

F Markov chains & queuing theory

F coding, compression, and cryptography

F packet protocols & traffic characteristics

F asynchronous distributed algorithms

F caching and data distribution strategies

F optimization of dynamic processes on networks (typically convex
but non-smooth)

F business modelling & financial forecasting

F complex systems?
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Talk outline

F graph concepts and problems

F connectivity

F chromatic number and clique number

F channel allocation

F the challenge - to balance (exact) theory with (real) practice
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Graph concepts
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F clique - a complete subgraph
F maximal clique - a clique that cannot be

extended to a larger one
F lonely set - a pairwise disjoint set of nodes

(stable set, independent set)
F colouring - an assignment of colours to

nodes in which no neighbours have the
same colour

F chromatic number χ - the number of
colours in a colouring with a minimal num-
ber of colours

F loneliness α - the number of nodes in a
largest lonely set

F clique number ω - the number of nodes in
a largest maximal clique
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The Bernoulli random graph model G{n, p}

F let G be a graph of n nodes

F let p = 1−q be the probability that each possible edge exists

F edge events are independent

F let P (n) be the probability that G{n, p} is connected

F then P (1) = 1 and P (n) = 1−
∑n−1

k=1

(
n−1
k−1

)
P (k)qk(n−k)

for n = 2, 3, 4, . . . .
P (1) = 1

P (2) = 1−q

P (3) = (2 q+1) (q−1)2

P (4) =
(
6 q3+6 q2+3 q+1

)
(1−q)3

P (5) =
(
24 q6+36 q5+30 q4+20 q3+10 q2+4 q+1

)
(q−1)4

F as n →∞, we have P (n) → 1−nqn−1.
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Probability of connectivity - the G(n, m) model

F problem: compute the numbers of connected labelled graphs with
n nodes and m = n−1, n, n+1, n+2, . . . edges

F exponential generating function for all labelled graphs:

g(w, z) =
∞∑

n=0

(1+w)(
n
2)zn/n!

F i.e., the number of labelled graphs with m edges and n nodes is
[wm zn]g(w, z)

F exponential generating function for all connected labelled graphs:

c(w, z) = log(g(w, z))

= z+w
z2

2
+(3w2+w3)

z3

6
+(16w3+15w4+6w5+w6)

z4

4!
+. . .
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Probability of connectivity for G(n, m)

F
P (n,n−1)

2ne2−nn−1/2ξ
∼ 1

2−
7
8 n−1+ 35

192 n−2+ 1127
11520 n−3+ 5189

61440 n−4+ 457915
3096576 n−5+

570281371
1857945600 n−6+291736667

495452160 n−7+O
(
n−8

)
. check: n = 10, exact=0.1128460393, asymptotic=0.1128460359

F
P (n,n+0)
2ne2−nξ ∼ 1

4ξ−
7
6n
−1/2+1

3ξn
−1−1051

1080n
−3/2+5

9ξn
−2+O

(
n−3

)
. check: n = 10, exact=0.276, asymptotic=0.319

F
P (n,n+1)

2ne2−nn1/2ξ
∼ 5

12−
7
12ξn

−1/2+515
144n

−1−28
9 ξn−3/2+788347

51840 n−2−308
27 ξn−5/2+

O
(
n−3

)
. check: n = 10, exact=0.437, asymptotic=0.407

. check: n = 20, exact=0.037108, asymptotic=0.037245

. check: n = 100, exact=2.617608×10−12, asymptotic=2.617596×10−12
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Hard graph problems

F finding χ, α and ω is proven to be NP-complete
. this means that it unlikely that any algorithm exists which runs in time which is

a polynomial function of the number of nodes

F we therefore have two options:
. use a heuristic, which is probably fast but may give the wrong answer
. use an exact algorithm, and try to make it as fast as possible by clever coding

F the theory is well developed and presented in many places, but
little practical experience gets reported

F therefore, ti is interesting to try exact algorithms for these prob-
lems to determine how big the problems can be in practice, and
compared the timings with approximate (relaxed) algorithms
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Chromatic number χ

F many papers appeared in the 1980s about backtracking (branch-
and-bound) methods. Some had errors

. idea: start to compute all colourings, but abort one as soon as it is worse than
the best so far

F can be combined with heuristics (greedy colourings) and exact
bounds like ω 6 χ 6 ∆+1, where ∆ is the maximum degree

F tradeoff in using heuristics depends on type of graph

F in practice (with a well-written C program), up to 100 nodes is ok,
and up to 200 for very sparse or very dense graphs

F best results are in a PhD by Chiarandini (Darmstadt 2005)
http://www.imada.sdu.dk/~marco/public.php

F determining χ may be easy for many real-world graphs with
specific structures (Coudert, DAC97)
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Achlioptas & Naor

F The two possible values of the chromatic number of a random
graph Annals of Mathematics, 162 (2005)
http://www.cs.ucsc.edu/~optas/

F the authors show that for fixed d, as n → ∞, the chromatic
number of G{n, d/n} is either k or k+1, where k is the smallest
integer such that d < 2k log(k). In fact, this means that k is given
by dd/(2W (d/2))e

F G{n, p} means the random graph on n nodes and each possible
edge appears independently with probability p
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Achlioptas & Naor cotd.
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Achlioptas & Naor - my conjecture

F the next graph (each point is the average of 1 million trials) sug-
gests that for small d, we have Pr [χ ∈ [k, k+1]] ∼ 1−exp(−dn/2)
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Clique number

F In Modern graph theory, page 230, Bollobás shows that the clique
number of G(n, p) as n → ∞ is almost surely d or d+1, where d

is the greatest natural number such that
(
n
d

)
p(d

2) > log(n)

F How accurate is this formula when n is small?

F We have d = 2 log(n)/ log(1/p)+O(log log(n)).
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Clique number - simulation results
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Counting graphs

Number of graphs on n nodes with chromatic number k:

n = 1 2 3 4 5 6 7 8 9 10
k ----------------------------------------------------------
2 0 1 2 6 12 34 87 302 1118 5478 A076278
3 0 0 1 3 16 84 579 5721 87381 2104349 A076279
4 0 0 0 1 4 31 318 5366 155291 7855628 A076280
5 0 0 0 0 1 5 52 867 28722 1919895 A076281
6 0 0 0 0 0 1 6 81 2028 115391 A076282
7 0 0 0 0 0 0 1 7 118 4251
8 0 0 0 0 0 0 0 1 8 165
9 0 0 0 0 0 0 0 0 1 9
10 0 0 0 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 0 0 0

(A-numbers from http://www.research.att.com/∼njas/sequences/)
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A real-world hard probelm

F I use real 802.11b spectral characteristics & interference
behaviour

F the channel allocation problem is to minimize the maximum
interference problem

F randomly placed nodes

F hexagonal lattices
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The channel allocation problem

F choose x such that some objective function is minimized

F This is a combinatorial optimization problem, so to find the exact
solution we must explicitly enumerate and evaluate all channel
assignments

F the number of assignments grows as (number of nodes)number of channels

and becomes infeasible to do a complete search beyond about 12
channels and 12 nodes

F so we use branch and bound method for the maximum interference
problem.

. we build a tree showing all possible assignment vectors with the depth of tree
representing the number of nodes being considered and each leaf a different
complete assignment. We do this by testing partial solutions and disregarding
ones worse than the best so far.
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The maximum interference problem

F the maximum interference at node i is

wi = max
j=1,...,n

j 6=i

Iij

F the objective function is w(x) = maxi wi(x); that is, the worst
maximum interference at any AP

F the optimization problem is

min
x

w(x);

that is, we aim to minimize the worst maximum interference

F this is feasible to solve exactly if good pruning strategies can be
found
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Pruning and preprocessing

F to have any advantage over complete enumeration efficient prun-
ing strategies must be found

F testing of partial solutions to determine possible good solutions
. in a typical example the number of function calls can drop from 6.106 to about

6000

F calculation of minimum separations from interference matrix
. this can usually give a further 50−75% reduction in function calls

F while branch and bound is powerful on its own it is sensitive to
the order in which the nodes are considered.

F by using the k-means heuristic to locate clusters and analysing
these first pruning, become much more effective
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Randomly placed nodes: before & after optimization

typical improvement: 2Mbps coverage goes from 50% to 90%.
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Hexagonal lattice - 3 and 12 channels

typical improvement: 12Mbps coverage goes from 26% to 100%.
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Two-network optimization

First optimize all 20 nodes, then imagine the first 10 nodes belong to a competitor’s
network and are optimized and then frozen, and then we come in with the second
10 nodes. How is our coverage and SNR affected by the competitor’s network?
(Answer: only about 2dB.)
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Scaling of interference & throughput with node density
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Results here are averaged over many instances of Poisson point process.
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