Some graph theory applications to communications networks

Keith Briggs

Keith.Briggs@bt.com

http://keithbriggs.info

Computational Systems Biology Group, Sheffield - 2006 Nov 02 1100

graph_problems_Sheffield_2006_Nov_02.tex TYPESET 2006 OCTOBER 27 14:08 IN PDFIATEX ON A LINUX SYSTEM

BT Research at Martlesham, Suffolk

- ★ Cambridge-Ipswich high-tech corridor
- ★ 2000 technologists
- ★ 15 companies
- ★ UCL, Univ of Essex

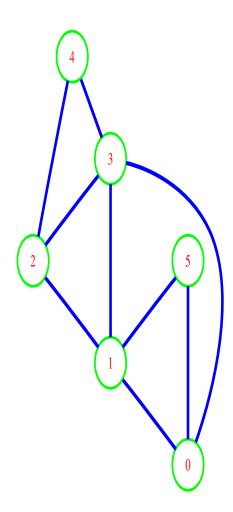
Mathematics in telecoms

- ★ graph theory network models
- ⋆ optimization of network topology
- information theory
- ★ Markov chains & queuing theory
- * coding, compression, and cryptography
- ★ packet protocols & traffic characteristics
- * asynchronous distributed algorithms
- ★ caching and data distribution strategies
- ⋆ optimization of dynamic processes on networks (typically convex but non-smooth)
- ★ business modelling & financial forecasting
- ★ complex systems?

Talk outline

- ★ graph concepts and problems
- ★ connectivity
- chromatic number and clique number
- * channel allocation
- ★ the challenge to balance (exact) theory with (real) practice

Graph concepts



- * clique a complete subgraph
- * maximal clique a clique that cannot be extended to a larger one
- ★ lonely set a pairwise disjoint set of nodes (stable set, independent set)
- ★ colouring an assignment of colours to nodes in which no neighbours have the same colour
- \star chromatic number χ the number of colours in a colouring with a minimal number of colours
- \star loneliness lpha the number of nodes in a largest lonely set
- \star clique number ω the number of nodes in a largest maximal clique

The Bernoulli random graph model $G\{n, p\}$

- \star let G be a graph of n nodes
- \star let p = 1 q be the probability that each possible edge exists
- ★ edge events are independent
- \star let P(n) be the probability that $G\{n,p\}$ is connected
- ★ then P(1) = 1 and $P(n) = 1 \sum_{k=1}^{n-1} \binom{n-1}{k-1} P(k) q^{k(n-k)}$ for $n = 2, 3, 4, \ldots$. P(1) = 1 P(2) = 1 q $P(3) = (2q+1)(q-1)^2$ $P(4) = (6q^3 + 6q^2 + 3q + 1)(1-q)^3$ $P(5) = (24q^6 + 36q^5 + 30q^4 + 20q^3 + 10q^2 + 4q + 1)(q-1)^4$
- \star as $n \to \infty$, we have $P(n) \to 1 nq^{n-1}$.

Probability of connectivity - the G(n, m) model

- \star problem: compute the numbers of connected labelled graphs with n nodes and $m=n-1,n,n+1,n+2,\ldots$ edges
- * exponential generating function for all labelled graphs:

$$g(w,z) = \sum_{n=0}^{\infty} (1+w)^{\binom{n}{2}} z^n / n!$$

- \star i.e., the number of labelled graphs with m edges and n nodes is $[w^m\,z^n]g(w,z)$
- * exponential generating function for all connected labelled graphs:

$$c(w,z) = \log(g(w,z))$$

$$= z + w\frac{z^2}{2} + (3w^2 + w^3)\frac{z^3}{6} + (16w^3 + 15w^4 + 6w^5 + w^6)\frac{z^4}{4!} + \dots$$

Probability of connectivity for G(n, m)

$$\star \frac{P(n,n-1)}{2^n e^{2-n} n^{-1/2} \xi} \sim \frac{1}{2} - \frac{7}{8} n^{-1} + \frac{35}{192} n^{-2} + \frac{1127}{11520} n^{-3} + \frac{5189}{61440} n^{-4} + \frac{457915}{3096576} n^{-5} + \frac{570281371}{1857945600} n^{-6} + \frac{291736667}{495452160} n^{-7} + O(n^{-8})$$

 \triangleright check: n = 10, exact=0.1128460393, asymptotic=0.1128460359

$$\star \frac{P(n,n+0)}{2^n e^{2-n} \xi} \sim \frac{1}{4} \xi - \frac{7}{6} n^{-1/2} + \frac{1}{3} \xi n^{-1} - \frac{1051}{1080} n^{-3/2} + \frac{5}{9} \xi n^{-2} + O\left(n^{-3}\right)$$

 \triangleright check: n = 10, exact=0.276, asymptotic=0.319

$$\star \frac{P(n,n+1)}{2^n e^{2-n} n^{1/2} \xi} \sim \frac{5}{12} - \frac{7}{12} \xi n^{-1/2} + \frac{515}{144} n^{-1} - \frac{28}{9} \xi n^{-3/2} + \frac{788347}{51840} n^{-2} - \frac{308}{27} \xi n^{-5/2} + O(n^{-3})$$

- \triangleright check: n = 10, exact=0.437, asymptotic=0.407
- \triangleright check: n = 20, exact=0.037108, asymptotic=0.037245
- ▷ check: n = 100, exact= 2.617608×10^{-12} , asymptotic= 2.617596×10^{-12}

Hard graph problems

- \star finding χ , α and ω is proven to be NP-complete
 - this means that it unlikely that any algorithm exists which runs in time which is a polynomial function of the number of nodes
- * we therefore have two options:
 - use a heuristic, which is probably fast but may give the wrong answer
 - use an exact algorithm, and try to make it as fast as possible by clever coding
- ★ the theory is well developed and presented in many places, but little practical experience gets reported
- ★ therefore, ti is interesting to try exact algorithms for these problems to determine how big the problems can be in practice, and compared the timings with approximate (relaxed) algorithms

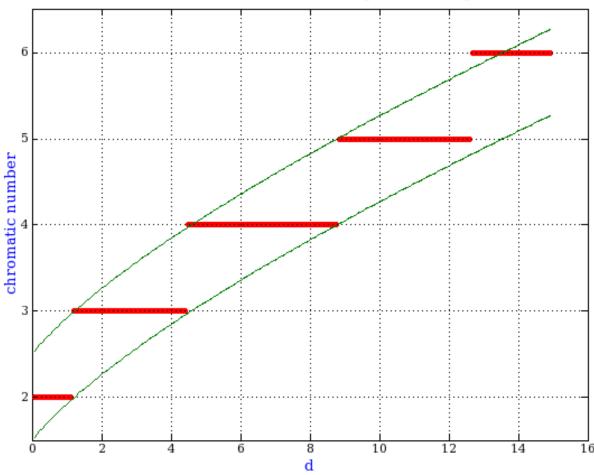
Chromatic number χ

- many papers appeared in the 1980s about backtracking (branch-and-bound) methods. Some had errors
 - idea: start to compute all colourings, but abort one as soon as it is worse than the best so far
- \star can be combined with heuristics (greedy colourings) and exact bounds like $\omega \leqslant \chi \leqslant \Delta + 1$, where Δ is the maximum degree
- ★ tradeoff in using heuristics depends on type of graph
- ★ in practice (with a well-written C program), up to 100 nodes is ok, and up to 200 for very sparse or very dense graphs
- ★ best results are in a PhD by Chiarandini (Darmstadt 2005) http://www.imada.sdu.dk/~marco/public.php
- \star determining χ may be easy for many real-world graphs with specific structures (Coudert, DAC97)

Achlioptas & Naor

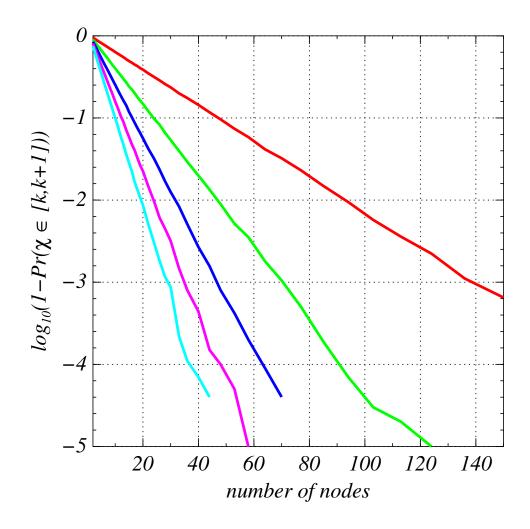
- ★ The two possible values of the chromatic number of a random graph Annals of Mathematics, 162 (2005) http://www.cs.ucsc.edu/~optas/
- \star the authors show that for fixed d, as $n \to \infty$, the chromatic number of $G\{n,d/n\}$ is either k or k+1, where k is the smallest integer such that $d < 2k \log(k)$. In fact, this means that k is given by $\lceil d/(2W(d/2)) \rceil$
- \star $G\{n,p\}$ means the random graph on n nodes and each possible edge appears independently with probability p

Achlioptas & Naor cotd.



Achlioptas & Naor - my conjecture

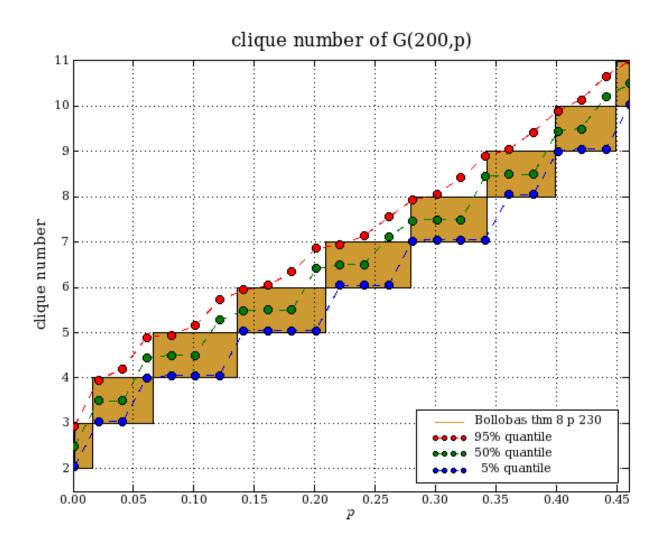
 \star the next graph (each point is the average of 1 million trials) suggests that for small d, we have $\Pr\left[\chi \in [k,k+1]\right] \sim 1 - \exp(-dn/2)$



Clique number

- * In Modern graph theory, page 230, Bollobás shows that the clique number of G(n,p) as $n\to\infty$ is almost surely d or d+1, where d is the greatest natural number such that $\binom{n}{d}p^{\binom{d}{2}}\geqslant \log(n)$
- \star How accurate is this formula when n is small?
- * We have $d = 2\log(n)/\log(1/p) + \mathcal{O}(\log\log(n))$.

Clique number - simulation results



Counting graphs

Number of graphs on n nodes with chromatic number k:

n =	1	2	3	4	5	6	7	8	9	10	
k											
2	0	1	2	6	12	34	87	302	1118	5478	A076278
3	0	0	1	3	16	84	579	5721	87381	2104349	A076279
4	0	0	0	1	4	31	318	5366	155291	7855628	A076280
5	0	0	0	0	1	5	52	867	28722	1919895	A076281
6	0	0	0	0	0	1	6	81	2028	115391	A076282
7	0	0	0	0	0	0	1	7	118	4251	
8	0	0	0	0	0	0	0	1	8	165	
9	0	0	0	0	0	0	0	0	1	9	
10	0	0	0	0	0	0	0	0	0	1	
11	0	0	0	0	0	0	0	0	O	0	

(A-numbers from http://www.research.att.com/~njas/sequences/)

A real-world hard probelm

- ★ I use real 802.11b spectral characteristics & interference behaviour
- ★ the channel allocation problem is to minimize the maximum interference problem
- ★ randomly placed nodes
- ★ hexagonal lattices

The channel allocation problem

- \star choose x such that some objective function is minimized
- ★ This is a combinatorial optimization problem, so to find the exact solution we must explicitly enumerate and evaluate all channel assignments
- ★ the number of assignments grows as (number of nodes)^{number of channels} and becomes infeasible to do a complete search beyond about 12 channels and 12 nodes
- * so we use branch and bound method for the maximum interference problem.
 - we build a tree showing all possible assignment vectors with the depth of tree representing the number of nodes being considered and each leaf a different complete assignment. We do this by testing partial solutions and disregarding ones worse than the best so far.

The maximum interference problem

★ the maximum interference at node i is

$$w_i = \max_{\substack{j=1,\ldots,n\\j\neq i}} I_{ij}$$

- \star the *objective function* is $w(x) = \max_i w_i(x)$; that is, the worst maximum interference at any AP
- ★ the optimization problem is

$$\min_{x} w(x);$$

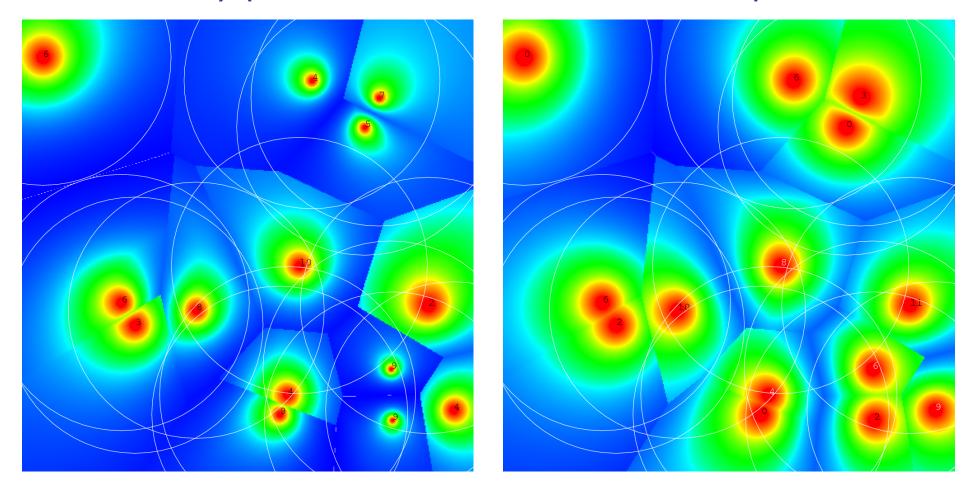
that is, we aim to minimize the worst maximum interference

★ this is feasible to solve exactly if good pruning strategies can be found

Pruning and preprocessing

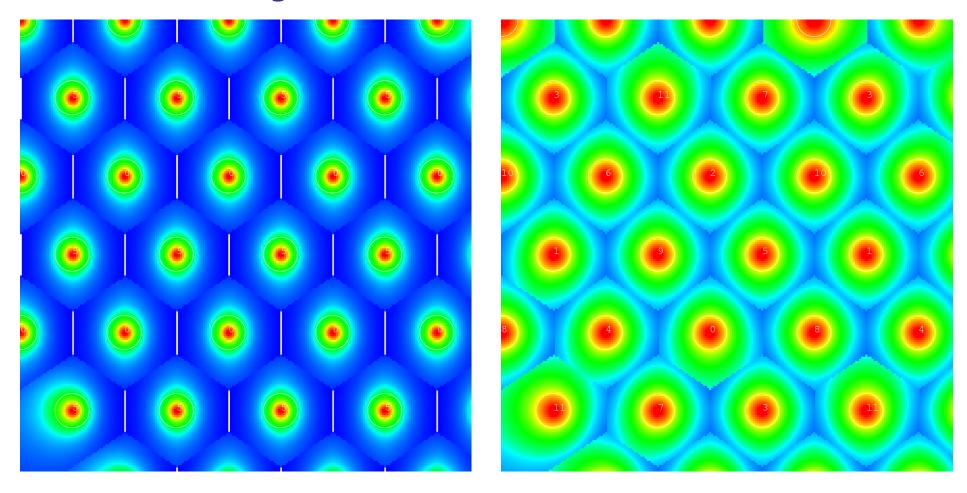
- ★ to have any advantage over complete enumeration efficient pruning strategies must be found
- ★ testing of partial solutions to determine possible good solutions
 - \triangleright in a typical example the number of function calls can drop from 6.10^6 to about 6000
- ★ calculation of minimum separations from interference matrix
 - \triangleright this can usually give a further 50-75% reduction in function calls
- * while branch and bound is powerful on its own it is sensitive to the order in which the nodes are considered.
- \star by using the k-means heuristic to locate clusters and analysing these first pruning, become much more effective

Randomly placed nodes: before & after optimization



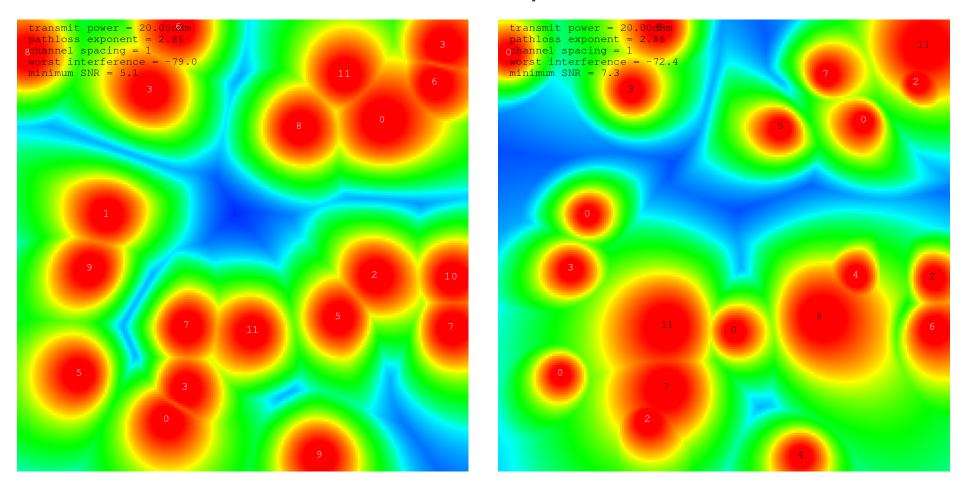
typical improvement: 2Mbps coverage goes from 50% to 90%.

Hexagonal lattice - 3 and 12 channels



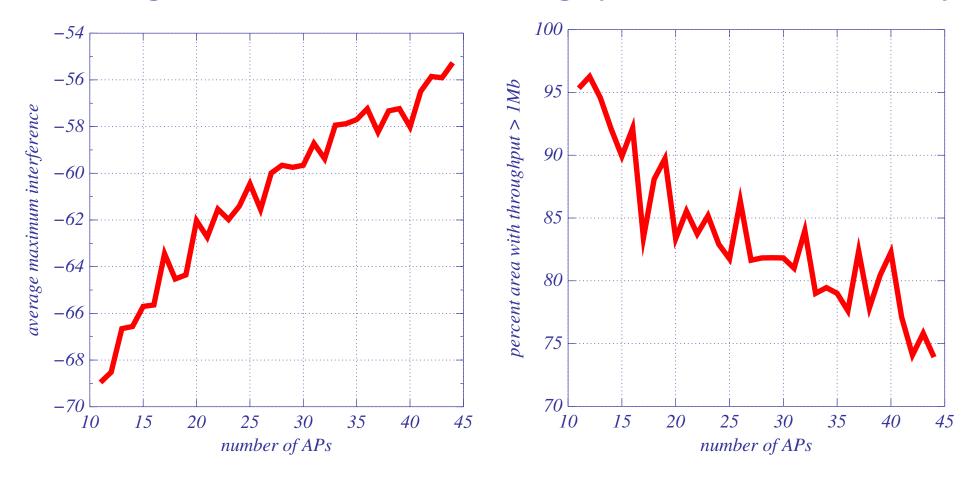
typical improvement: 12Mbps coverage goes from 26% to 100%.

Two-network optimization



First optimize all 20 nodes, then imagine the first 10 nodes belong to a competitor's network and are optimized and then frozen, and then we come in with the second 10 nodes. How is our coverage and SNR affected by the competitor's network? (Answer: only about 2dB.)

Scaling of interference & throughput with node density



Results here are averaged over many instances of Poisson point process.