[1]
|
J. F. Koksma.
Diophantische Approximationen.
Chelsea, New York, reprint, 19??
|
[2]
|
A. Broise.
Fractions continués multidimensionelles et lois stables.
Bulletin de la Société mathématique de France,
124:97-139, 1996.
|
[3]
|
T. N. Langtry.
An application of Diophantine approximation to the construction of
rank-1 lattice quadrature rules.
Mathematics of computation, 65:1635-1662, 1996.
|
[4]
|
M. M. Dodson and J. A. G. Vickers, editors.
Number theory and dynamical systems, volume 134 of London
mathematical society lecture note series.
CUP, Cambridge, 1989.
|
[5]
|
V. I. Bernik and M. M. Dodson.
Metric Diophantine approximation on manifolds.
CUP, 1999.
|
[6]
|
F. Schweiger.
Ergodic theory of fibred systems and metric number theory.
Clarendon Press, Oxford, 1995.
|
[7]
|
Stefano Marmi.
An introduction to small divisors problems.
Istituti editoriali e poligrafici internazionali, Pisa, Roma, 2000.
ISBN 88-8147-227-9.
|
[8]
|
Afonso Ferreira, Jérôme Galtier, and Stéphane Perennes.
Approximation of a straight line in a bounded lattice.
Technical report, INRIA Sophia Antipolis, 2000.
ALGOTEL2000.
|
[9]
|
M. L. Kontsevich and Yu. M. Suhov.
Statistics of Klein polyhedra and multidimensional continued
fractions.
In Pseudoperiodic topology, volume 197 of Am. Math. Soc.
Transl., pages 9-27. 1999.
Dedicated to V. I. Arnold on his 60th anniversary.
|
[10]
|
John. D. Hobby.
A natural lattice basis problem with applications.
?, ?:?, ?
Bell Labs preprint.
|
[11]
|
N. G. Moshchevitin.
Continued fractions, multidimensional Diophantine approximations
and applications.
J. de Théorie des Nombres de Bordeaux, 11:425-438, 1999.
www.emis.de/journals/JNTB.
|
[12]
|
Edward B. Burger.
On real quadratic number fields and simultaneous Diophantine
approximation.
Monatshefte für Mathematik, 128:201-209, 1999.
|
[13]
|
Thilo Dienst.
On a problem of Schoenberg and Wills in Diophantine
approximation.
Period. Math. Hung., 36:105-118, 1998.
|
[14]
|
D. M. Hardcastle and K. Khanin.
Almost everywhere strong convergence of multidimensional continued
fraction algorithms.
Technical Report HPL-BRIMS-00-12, BRIMS, Bristol, UK, 2000.
|
[15]
|
D. M. Hardcastle and K. Khanin.
Continued fractions and the d-dimensional Gauss transform.
Technical Report HPL-BRIMS-00-15, BRIMS, Bristol, UK, 2000.
|
[16]
|
A. D. Bruno.
Local methods in nonlinear differential equations: Part I: The
local method of nonlinear analysis of differential equations; Part II: The
sets of analyticity of a normalizing transformation.
Soviet Mathematics. Springer, 1989.
|
[17]
|
M. R. Herman.
Recent results and some open questions on Siegel's linearization
theorem of germs of complex analytic diffeomorphisms of n near a fixed
point.
In M. Mebkhout and R. Sénéor, editors, Proc. VIII Int.
Congress Math. Phys., Marseille, July 16-25 1986, pages 138-184. World
Scientific, c1987.
|
[18]
|
K. M. Briggs.
On the Furtwängler algorithm for simultaneous rational
approximation.
Exp. Math. (to be submitted), ?:?, 2001.
|
[19]
|
P. Arnoux and A. Nogueira.
Mesures de gauss pour des algorithmes de fractions continués
multidimensionelles.
Annales scientifiques de l'école normale supérieure,
26:645-664, 1993.
MR 95h:11076.
|
[20]
|
E. Korkina.
The periodicity of multidimensional continued fractions.
C. R. Acad. Sci., 319:777-780, 1994.
MR 95j:11064.
|
[21]
|
A. D. Bryuno and V. I. Parusnikov.
Klein polyhedra for two cubic Davenport forms.
Mathematical notes, 56(3-4):9-27, 1994.
Keldysh Institute of the RAS, preprint 48.
|
[22]
|
A. D. Bryuno and V. I. Parusnikov.
Comparison of various generalizations of continued fractions.
Mathematical notes, 61:278-286, 1997.
Keldysh Institute of the RAS, preprint 52.
|
[23]
|
Gilles Lachaud.
Polyèdre d'Arnol'd et voile d'un cône simplicial: analogues
du théorème de Lagrange.
C. R. Acad. Sci. Paris, 317:711-716, 1993.
|
[24]
|
Gilles Lachaud.
Klein polygons and geometric diagrams.
In Contemporary mathematics, volume 210, pages 365-372. 1998.
MR 99a:11086.
|
[25]
|
Gilles Lachaud.
Sails and Klein polyhedra.
In Contemporary mathematics, volume 210, pages 373-385. 1998.
MR 98k:11094.
|
[26]
|
E. I. Korkina.
Two-dimensional continued fractions. The simplest examples.
Proc. Steklov Institute of Mathematics, 209:124-144, 1995.
MR 97k:11104.
|
[27]
|
V. I. Arnold.
Higher dimensional continued fractions.
Regular and chaotic dynamics, 3:10-17, 1998.
MR 2000h:11012; web.uni.udm.ru/rcd/rcd/index.html.
|
[28]
|
A. D. Bruno.
A new generalization of the continued fraction (Russian).
Technical Report 82, Keldysh Institute of the RAS, Moscow, 1999.
|
[29]
|
V. I. Parusnikov.
Klein's polyhedra for the third extremal ternary cubic form
(Russian).
Technical Report 137, Keldysh Institute of the RAS, Moscow, 1995.
|
[30]
|
V. I. Parusnikov.
Klein's polyhedra with big faces (Russian).
Technical Report 93, Keldysh Institute of the RAS, Moscow, 1997.
|
[31]
|
V. I. Parusnikov.
Klein's polyhedra for the fifth extremal cubic form (Russian).
Technical Report 69, Keldysh Institute of the RAS, Moscow, 1998.
|
[32]
|
V. I. Parusnikov.
Klein's polyhedra for the seventh extremal cubic form (Russian).
Technical Report 79, Keldysh Institute of the RAS, Moscow, 1999.
|
[33]
|
V. I. Parusnikov.
Klein polyhedra for complete decomposable forms.
In K. Gyory, A. Petho, and V. Sós, editors, Number
Theory. Diophantine, computational and algebraic aspects, proceedings of the
international conference held in Eger, Hungary 1996, Berlin, New York, 1998.
Walter de Gruyter.
|
[34]
|
I. V. L. Clarkson, J. E. Perkins, and I. M. Y. Mareels.
On the novel application of number theoretic methods to radar
detection.
In Proceedings of the international conference on signal
processing applications and technology (ICSPAT 93), 1993.
|
[35]
|
Vaughan Clarkson, Jane Perkins, and Iven Mareels.
An algorithm for best approximation of a line by lattice points in
three dimensions.
Technical report, 1995.
3rd Conference on Computational Algebra and Number Theory (CANT 95),
Conference abstracts and other information. Formerly online at
wwwcrasys.anu.edu.au/Projects/pulseTrain/Papers/CPM95.ps.gz.
|
[36]
|
I. V. L. Clarkson, J. E. Perkins, and I. M. Y. Mareels.
An algorithm for best approximation of a line by lattice points in
three dimensions.
Technical report, 1995.
presented at 19th Journées Arithmetique, Barcelona.
|
[37]
|
I. V. L. Clarkson, S. D. Howard, and I. M. Y. Mareels.
Estimating the period of a pulse train from a set of sparse, noisy
measurements.
In Proceedings of the international symposium on signal
processing applications and its aplications (ISSPA 96), volume 2, pages
885-888, 1996.
|
[38]
|
I. V. L. Clarkson, J. E. Perkins, and I. M. Y. Mareels.
Number/theoretic [sic] solutions to intercept time problems.
IEEE Trans. Information Theory, 42:959-971, 1996.
|
[39]
|
I. Vaughan L. Clarkson and Iven M. Y. Mareels.
Finding best simultaneous diophantine approximations using sequences
of minimal sets of lattice points.
Technical report, Submitted to Math. Comp., 1996. rejected?
Formerly at
wwwcrasys.anu.edu.au/Projects/pulseTrain/Papers/CM96.ps.gz.
|
[40]
|
I. Vaughan L. Clarkson.
Approximation of Linear Forms by Lattice Points, with
applications to signal processing.
PhD thesis, Australian National University, 1997.
|
[41]
|
C. Rössner and C. P. Schnorr.
An optimal, stable continued fraction algorithm for arbitrary
dimension.
Electronic Colloquium on computational complexity,
TR96-020:1-14, 1996.
|
[42]
|
J. Hastad, B. Just, J. C. Lagarias, and C. P. Schnorr.
Algorithms for finding integer relations among real numbers.
SIAM J. Comp., 18:859-881, 1989.
|
[43]
|
B. Just.
Generalizing the continued fraction algorithm to arbitrary
dimensions.
SIAM J. Computing, 21:909-926, 1992.
|
[44]
|
H. Minkowski.
Zur theorie der Kettenbrüche.
In David Hilbert, editor, Gesammelte Abhandlungen, volume 1,
pages 278-292. 1911.
Reprinted Chelsea Pub. Co. 1967.
|
[45]
|
H. Minkowski.
Zur geometrie der Zahlen.
In David Hilbert, editor, Gesammelte Abhandlungen, volume 2,
pages 43-52. 1911.
reprinted Chelsea Pub. Co. 1967.
|
[46]
|
J. R. Kinney.
Note on a singular function of Minkowski.
Proc. Am. Math. Soc., 11:788, 1960.
|
[47]
|
Pelagro Viader and Jaume Paradis.
A new light on Minkowski's ?(x) function.
Journal of Number Theory, 73:212-227, 1998.
|
[48]
|
Roland Girgensohn.
Constructing singular functions via Farey fractions.
Journal of Mathematical Analysis and Applications,
203:127-141, 1996.
|
[49]
|
Werner Kratz.
On optimal constants for best two-dimensional simultaneous
diophantine approximations.
Monatshefte für Mathematik, 128:99-110, 1999.
|
[50]
|
W. G. Nowak.
A note on simultaneous Diophantine approximation.
Manuscripta Math., 36:33-46, 1981.
MR 83a:10062.
|
[51]
|
W. G. Nowak.
A remark concerning the s-dimensional simultaneous Diophantine
approximation constants.
Grazer Math. Ber., 318:105-110, 1992.
|
[52]
|
Werner Georg Nowak.
The critical determinant of the double paraboloid and Diophantine
approximation on R3.
Technical report, Universität für Bodenkultur Wien, no date.
|
[53]
|
Werner Georg Nowak.
Diophantine approximation on Rs: on a method of Mordell and
Armitage.
Technical report, Universität für Bodenkultur Wien, 1999.
|
[54]
|
Werner Georg Nowak.
The critical determinant of the double paraboloid and Diophantine
approximation on R3 and R4.
Mathematica Pannonica, 10:111-122, 1999.
|
[55]
|
E. M. Bollt and J. D. Meiss.
Breakup of invariant tori for the 4-dimensional semistandard map.
Physica D, 66:282-297, 1993.
|
[56]
|
S. Krass.
Estimates for n-dimensional diophantine approximation constants for
n 4.
J. Num. Th., 20:172-176, 1985.
|
[57]
|
T. W. Cusick and S. Krass.
Formulas for some diophantine approximation constants.
J. Austral. Math. Soc., A44:311-323, 1988.
|
[58]
|
S. Krass.
The n-dimensional diophantine approximation constants.
Bulletin of the Australian Mathematical Society, 32:313-316,
1985.
|
[59]
|
Victor Shoup.
NTL http://www.shoup.net/ntl/.
2000.
|
[60]
|
W. W. Schmidt.
Diophantine Approximation, volume 785 of Lecture Notes in
Mathematics.
Springer-Verlag, first edition, 1996.
Second printing.
|
[61]
|
Mélanie Crespo.
Exposants de Lyapounov pour algorithmes de fractions continues: une
extension aux dimensions supérieuses.
Master's thesis, Université de Genève, Faculté des
Sciences, Section de Mathématiques, 1998.
|
[62]
|
P. R. Baldwin.
A multidimensional continued-fraction and some of its properties.
J. Stat. Phys., 66:1463-1505, 1992.
|
[63]
|
P. R. Baldwin.
A convergence exponent for multidimensional
continued-fraction algorithms.
J. Stat. Phys., 66:1507-1526, 1992.
|
[64]
|
S. Ito, M. Keane, and M. Ohtsuki.
Almost everywhere exponential convergence of the modified
Jacobi-Perron algorithm.
Ergodic Theory and Dynamical Systems, 13:319-334, 1993.
|
[65]
|
David J. Grabiner.
Farey nets and multidimensional continued fractions.
Monatshefte für Mathematik, 114:35-60, 1992.
|
[66]
|
Max Bauer.
Multidimensional continued fractions and the topological entropy of
pseudo-anosov maps.
Technical Report 95-09, Institut de Recherche Mathématique de
Rennes, 1995.
|
[67]
|
A. Nogueira.
The three-dimensional Poincaré continued fraction algorithm.
Israel J. Math., 90:373-401, 1995.
|
[68]
|
V. Baladi and A. Nogueira.
Lyapunov exponents for non-classical multidimensional continued
fraction algorithms.
Nonlinearity, 9:1529-1546, 1996.
|
[69]
|
Ph. Furtwängler.
Über die simultane Approximation von Irrationalzahlen (Erste
Mitteilung).
Math. Annalen, 96:169-175, 1926.
|
[70]
|
Ph. Furtwängler.
Über die simultane Approximation von Irrationalzahlen
(Zweite Mitteilung).
Math. Annalen, 99:71-83, 1928.
|
[71]
|
K. M. Briggs and G. Álvarez.
Scaling in a map of the two-torus.
Experimental Mathematics, 9:301-307, 2000.
|
[72]
|
Seung-hwan Kim and Stellan Ostlund.
Renormalization of mappings of the two-torus.
Phys. Rev. Lett., 55:1165-1168, 1985.
|
[73]
|
Seung-hwan Kim and Stellan Ostlund.
Simultaneous rational approximations in the study of dynamical
systems.
Phys. Rev. A, 34:3426-3434, 1986.
|
[74]
|
Keith Martin Briggs.
A torus map based on Jacobi's sn.
Computers and Graphics, 19:451-453, 1995.
Keywords: graphics, torus
|
[75]
|
G. Szekeres.
Multidimensional continued fractions.
Annales Universitatis Scientarium Budapestinenses de Rolando
Eotvos Nominatate, sectio mathematica, 8:113-140, 1970.
MR 47 #1753.
|
[76]
|
G. Szekeres.
The N-dimensional approximation constant.
Bull. Austral. Math. Soc., 29:119-125, 1984.
|
[77]
|
G. Szekeres.
Computer examination of the 2-dimensional simultaneous approximation
constant.
Ars Combinatoria, 19A:237-243, 1985.
|
[78]
|
G. Szekeres.
Search for the three dimensional approximation constant.
In J. H. Loxton and A. J. van der Poorten, editors,
Diophantine analysis: proceedings of the Number Theory Section of the 1985
Australian Mathematical Society Convention, volume 109 of London
Mathematical Society lecture note series, pages 139-146, 1986.
|
[79]
|
Arne J. Brentjes.
A two-dimensional continued fraction algorithm with an application in
cubic number fields.
J. Reine Angew. Math., 326:18-44, 1981.
MR 83b:10037.
|
[80]
|
A. J. Brentjes.
Multi-dimensional Continued Fraction Algorithms, volume 145 of
Mathematical Centre Tracts.
Mathematisch Centrum Amsterdam, 1981.
MR 83b:10038.
|
[81]
|
A. J. Brentjes.
Multidimensional continued fraction algorithms.
In Computational methods in number theory, Part II, volume 155
of Mathematical Centre Tracts, pages 287-319. Mathematisch Centrum
Amsterdam, 1982.
MR 85f:11096.
|
[82]
|
John Erik Fornæss.
Dynamics in several complex variables.
Number 87 in Regional conference series in mathematics. American
Mathematical Society, 1996.
|
[83]
|
Eduard Zehnder.
A simple proof of a generalization of a theorem by C. L.
Siegel.
In Jacob Palis and Manfredo do Carmo, editors, Geometry and
Topology, proceedings of the III Latin American School of Mathematics,
Rio de Janeiro 1976, volume 597 of Lecture Notes in Mathematics,
pages 855-866. Springer-Verlag, Berlin, 1977.
|
[84]
|
W. W. Adams.
Some computations in diophantine approximations.
J. reine angew. Math., 220:163-173, 1965.
MR 32 #91.
|
[85]
|
W. W. Adams.
Simultaneous asymptotic diophantine approximation.
Mathematika, 14:173-180, 1967.
|
[86]
|
W. W. Adams.
Simultaneous diophantine approximations and cubic irrationals.
Pacific J. Math., 30:1-14, 1969.
|
[87]
|
W. W. Adams.
Simultaneous asymptotic diophantine approximations to a basis of a
real cubic number field.
J. Number Theory, 1:179-194, 1969.
|
[88]
|
W. W. Adams.
Simultaneous asymptotic diophantine approximations to a basis of a
real number field.
Nagoya Math J., 42:79-87, 1971.
|
[89]
|
W. W. Adams.
The best two-dimensional diophantine approximation constant for cubic
irrationals.
Pacific J. Math., 91:29-30, 1980.
|
[90]
|
J. W. S. Cassels.
Simultaneous diophantine approximation.
J. Lond. Math. Soc., 30:119-121, 1955.
|
[91]
|
T. W. Cusick.
Diophantine approximations for ternary linear forms.
Math. Comp., 25:163-180, 1971.
MR 45 #5083.
|
[92]
|
T. W. Cusick.
Formulas for some diophantine approximation constants.
Math. Ann., 197:182-188, 1972.
|
[93]
|
T. W. Cusick.
Diophantine approximations for ternary linear forms. II.
Math. Comp., 26:977-993, 1972.
MR 48 #244.
|
[94]
|
T. W. Cusick.
Simultaneous diophantine approximation of real numbers.
Acta Arithmetica, 22:1-9, 1972.
|
[95]
|
T. W. Cusick.
Diophantine approximation of linear forms over an algebraic number
field.
Mathematika, 20:16-23, 1973.
MR 49 #4942.
|
[96]
|
T. W. Cusick.
Formulas for some diophantine approximation constants II.
Acta Arithmetica, 26:117-128, 1974.
|
[97]
|
T. W. Cusick.
The two-dimensional diophantine approximation constant.
Monatshefte für Mathematik, 78:297-304, 1974.
|
[98]
|
T. W. Cusick.
The Szekeres multidimensional continued fraction algorithm.
Math. Comp., 31:280-317, 1977.
MR 55 #2775.
|
[99]
|
T. W. Cusick.
Estimates for diophantine approximation constants.
J. Number Theory, 12:543-556, 1980.
|
[100]
|
T. W. Cusick.
Best diophantine approximations for ternary linear forms.
Journal für die reine und angewandte Mathematik,
315:40-52, 1980.
|
[101]
|
T. W. Cusick.
Best diophantine approximations for ternary linear forms, II.
In Analytic Number Theory Proceedings, Philadelphia 1980,
volume 899 of Lecture Notes in Mathematics, pages 231-238.
Springer-Verlag, 1981.
|
[102]
|
T. W. Cusick.
The two-dimensional diophantine approximation constant. II.
Pacific J. Math., 105:53-67, 1983.
|
[103]
|
H. Davenport.
Simultaneous diophantine approximation.
Proc. London Math. Soc., 2:403-416, 1952.
|
[104]
|
H. Davenport.
Simultaneous diophantine approximation.
In Proc. International Congress Math., Amsterdam 1954, volume
III, pages 9-12, 1954.
|
[105]
|
H. Davenport and K. Mahler.
Simultaneous diophantine approximation.
Duke Math. J., 13:105-111, 1946.
|
[106]
|
H. Davenport and W. M. Schmidt.
Approximation to real numbers by quadratic irrationals.
Acta Arithmetica, 13:169-176, 1967.
|
[107]
|
H. Davenport.
A theorem on linear forms.
Acta Arithmetica, 14:209-223, 1968.
|
[108]
|
J. C. Lagarias and Andrew D. Pollington.
The continuous diophantine approximation mapping of Szekeres.
J. Austral. Math. Soc., A59:148-172, 1995.
|
[109]
|
J. C. Lagarias.
Geodesic multidimensional continued fractions.
Proc. London Math. Soc., 69:464-488, 1994.
|
[110]
|
J. C. Lagarias.
Some new results in simultaneous diophantine approximation.
Queen's Papers in Pure and Applied Math., 54:453-474, 1980.
|
[111]
|
J. C. Lagarias.
Best simultaneous diophantine approximations I. Growth rates of
best approximation denominators.
Trans. Am. Math. Soc., 272:545-554, 1980.
|
[112]
|
J. C. Lagarias.
Best simultaneous diophantine approximations II. Behavior of
consecutive best approximations.
Pacific J. Math., 102:61-88, 1982.
|
[113]
|
J. C. Lagarias.
Best simultaneous diophantine approximations III. Approximations
to a basis of a non-totally real cubic field.
Never appeared.
|
[114]
|
J. C. Lagarias.
Best simultaneous diophantine approximations IV. Transcendental
growth rates for approximations to a basis of a non-totally real cubic field.
Never appeared.
|
[115]
|
C. Rössner and J.-P. Seifert.
Approximating good simultaneous diophantine approximations is almost
NP-hard.
In Mathematical Foundations of Computer Science, Proc. 1996
Cracow conference, volume 1113 of Lecture Notes in Comp. Sci., pages
494-505. Springer-Verlag, 1996.
MR 98g:11143.
|
[116]
|
Stefan A. Burr, editor.
The unreasonable effectiveness of number theory, volume 46 of
Proceedings of symposia in applied mathematics.
American Mathematical Society, 1992.
|
[117]
|
J. C. Lagarias.
Number theory and dynamical systems.
In Stefan A. Burr, editor, The unreasonable effectiveness of
number theory, volume 46 of Proceedings of symposia in applied
mathematics, pages 35-72. American Mathematical Society, 1992.
|
[118]
|
J. C. Lagarias.
The quality of diophantine approximations found by the
Jacobi-Perron algorithm and related algorithms.
Monatshefte für Mathematik, 115:299-328, 1993.
|
[119]
|
H. Cohen.
A course in computational algebraic number theory, volume 138
of Graduate texts in mathematics.
Springer-Verlag, 1993.
|
[120]
|
M. Govin, C. Chandre, and H.R. Jauslin.
Kolmogorov-arnold-moser-renormalization-group analysis of stability
in Hamiltonian flows.
Phys. Rev. Lett., 79(20):3881-3884, 1997.
|
[121]
|
C. Chandre, M. Govin, and H.R. Jauslin.
Kolmogorov-Arnold-Moser renormalization-group approach to the
breakup of invariant tori in Hamiltonian systems.
Phys. Rev. E, 57:1536-1543, 1998.
|
[122]
|
C. Chandre, M. Govin, H.R. Jauslin, and H. Koch.
Universality for the breakup of invariant tori in Hamiltonian
flows.
Phys. Rev. E, 57:6612-6617, 1998.
|
[123]
|
C. Chandre and H.R. Jauslin.
A version of Thirring's approach to the Kolmogorov-Arnold-Moser
theorem for quadratic Hamiltonians with degenerate twist.
J. Math. Phys., 39:5856-5865, 1998.
|
[124]
|
C. Chandre and H.R. Jauslin.
Critical attractor and universality in a renormalization-group scheme
for three frequency Hamiltonian systems.
Phys. Rev. Lett., 81:5125-5128, 1998.
|
[125]
|
C. Chandre, H.R. Jauslin, and G. Benfatto.
An approximate KAM-renormalization-group scheme for Hamiltonian
systems.
J. Stat. Phys., 94:241-251, 1999.
|
[126]
|
C. Chandre, H.R. Jauslin, G. Benfatto, and A. Celletti.
Approximate renormalization-group transformation for Hamiltonian
systems with three degrees of freedom.
Phys. Rev. E, 60:5412 - 5421, 1999.
|
[127]
|
C. Chandre and H.R. Jauslin.
KAM-renormalization-group for Hamiltonian systems with two
degrees of freedom.
In S. Miracle-Solé, J. Ruiz, and V. Zagrebnov, editors,
Mathematical Results in Statistical Mechanics. World Scientific, Singapore,
1999.
|
[128]
|
C. Chandre, J. Laskar, G. Benfatto, and H.R. Jauslin.
Determination of the threshold of the breakup of invariant tori in
three frequency Hamiltonian systems.
in preparation, 2000.
|
[129]
|
C. Chandre and H.R. Jauslin.
Strange attractor for the renormalization flow for invariant tori of
Hamiltonian systems with two generic frequencies.
Phys. Rev. E, 61:1320 - 1328, 2000.
|
[130]
|
C. Chandre and R. S. MacKay.
Approximate renormalization for the break-up of invariant tori with
three frequencies.
preprint SPhT t00/003.
|
[131]
|
C. P. Schnorr.
Factoring integers and computing discrete logarithms via diophantine
approximation.
In Advances in Computational Complexity. AMS DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, volume 13, pages
171-182. 1993.
www.mi.informatik.uni-frankfurt.de/research/papers.html.
|
[132]
|
Arnold Schönhage.
Factorization of univariate integer polynomials by diophantine
approximation and an improved basis reduction algorithm.
In Automata, Languages and Programming, 11th Colloquium: ICALP
84 Antwerp, Belgium, volume 172 of Springer Lect. Notes Comp. Sci.,
pages 436-447. 1984.
|
[133]
|
András Frank and Éva Tardos.
An application of simultaneous diophantine approximation in
combinatorial optimization.
Combinatorica, 7:49-66, 1987.
|
[134]
|
J. C. Lagarias.
Knapsack public key cryptosystems and diophantine approximation
(extended abstract).
In D. Chaum, editor, Advances in Cryptology: Proceedings of
Crypto 83, pages 3-23. Plenum Press, 1984.
|
[135]
|
Martin Henk and Robert Weismantel.
Test sets of the knapsack problem and simultaneous diophantine
approximation.
In Algorithms ESA 97, 5th Annual Symposium, volume 1284 of
Lecture Notes in Computer Science, pages 271-283. Springer, 1997.
|
[136]
|
B. R. Schratzberger.
The exponent of convergence for Brun's algorithm in two dimensions.
Sitzungsber. Abt. II, 207:229-238, 1998.
|